
Boston College Computer Science Senior Thesis

USING QBF SOLVERS TO SOLVE

GAMES AND PUZZLES

Zhihe Shen

Advisor: Howard Straubing

Abstract

There are multiple types of games, such as board games and card games. Some

are multiplayer games and some are single-player games. Many games such as

2-player games are hard to solve because the problem of determining whether a

given player has a winning strategy for these games is PSPACE-complete. It is

proved that the problem of determining whether a quanti�ed boolean formula is

true is also PSPACE-complete. Because of the PSPACE-completeness of TQBF,

every problem in PSPACE, in particular these games, can be encoded as an instance

of TQBF. Thus, one way to understand the complexity of a game is to encode it

as a quanti�ed Boolean formula.

This thesis aims to investigate the computational complexity of di�erent kinds of

games. We choose to work on games played between two agents, for example, simple

geography games. Because they are in PSPACE, we convert them into non-clausal

quanti�ed Boolean formulas based on the rules of each game. By solving those

formulas, we can �nd a winning strategy for either player. One way to solve these

formulas is to use a quanti�ed Boolean formula solver (QBF solver). In this paper,

we will use GhostQ to solve the non-clausal quanti�ed Boolean formula.

2

Contents

1. Introduction 4

2. Concept 6

2.1 Boolean formula ... 6

2.2 Conjunctive Normal Form ... 6

2.3 Boolean Satis�ability Problem .. 6

2.4 Quanti�ed Boolean Formulas ... 7

2.5 Clausal vs. Non-Clausal Quanti�ed Boolean Formulas 8

2.6 PSPACE and PSPACE-complete .. 8

2.7 True Quanti�ed Boolean Formulas .. 9

2.8 TQBF is PSPACE-complete .. 10

2.9 SAT vs. QBF ... 11

2.10 SAT solvers vs. QBF solvers .. 12

2.11 A QBF solver: GhostQ .. 13

3. Solve Simple Geography Games 16

3.1 Introduction ... 16

3.2 Methodology .. 16

3.3 Encoding .. 16

3.4 Implementation .. 18

3.5 Result ... 23

3.6 Game Interface .. 23

3

1. Introduction

Let us �rst think about a game like Rush Hour. The goal is to �nd a sequence of

legal moves that would allow a target car to exit the game board. In each round,

one of the players can make a legal move based on the rules of the game and state

of the board. When the game board is very large, it is hard to solve because we

cannot �nd a way better than a brute-force search of all possible sequences of legal

that the players have chosen to the variables in the formula.

Then we can use a quanti�ed Boolean formula solver to complete the process

of evaluating quanti�ed Boolean formulas. In this paper, we will encode simple

geography games as instances of quanti�ed Boolean formulas. In section 3.3, we

will introduce the symbols we use and the rules we follow to encode these games. So

how can we solve these instances of quanti�ed Boolean formulas? Given that fairly

(true _ true) � true.

2.4 Concept of Quanti�ed Boolean Formulas (QBF)

Quanti�ed Boolean formulas (QBF) extend propositional formulas by al-

lowing explicit quanti�cation (9;8) over the propositional variables [5].

Syntax:

Boolean formulas together with quanti�ers 8 (for all) and 9 (there exists) are called

quanti�ed Boolean formulas. If all the variables in a formula are within the

scope of some quanti�er, then the formula is fully quanti�ed.

Semantics:

8x ’

means � is true. Then we assume x1 to be false, so we can let x2 be true to make

the statement � true. Since for all possible values of x1, we can �nd a value of x2

to make the statement � true. We conclude that the statement is always true.

2.5 Clausal vs. Non-Clausal Quanti�ed Boolean Formulas

A Clausal quanti�ed Boolean formula is constructed by one or more quanti-

�ers followed by a Boolean formula in conjunctive normal form.

For example, 9x19x28y18y29z3 ((:x1 _ x2) ^ (y2 _ y3) ^ z3) is a clausal quan-

ti�ed Boolean formula.

However, a non-clausal quanti�ed Boolean formula does not have this re-

striction of order. It can be constructed by one or more quanti�ers followed by

a propositional expression which is followed by quanti�ers followed by another

propositional expression and so on.

For example, 9x19x2 ((x1_x2)^8y18y

can loop through all possible moves of the two players. Assume there exists a game

tree. For an n� n game board, we need at most O(n2) space to store the board, so

each level of the recursion stack uses at most O(n2) space. Then we need to keep

track of the moves that have been examined. The height of the recursion stack

is less than or equal to the depth of the game tree, which is n2. Thus, the algo-

rithm to solve go-moku runs in space O(n4

2.8 Sketch of the proof that TQBF is PSPACE-complete

The problem of determining whether a quanti�ed Boolean formula is true is

PSPACE-complete. Our approach to prove the statement follows that of Sipser [3].

The proof consists of two parts.

First, we use a recursive algorithm to show that TQBF is in PSPACE. Let T

be a polynomial space algorithm that decides TQBF and h�i - a fully quanti�ed

Boolean formula - be the input of the algorithm T:

1. If � contains no quanti�ers i.e. 8, 9, then we evaluate � directly because the

expression only contains constants. If � is true, then accept. Otherwise, reject.

2. If � equals 8x ’, then we recursively call T on ’ because variable x can have

di�erent values. That is to say, we replace variable x with 1 and 0 to evaluate ’.

a quanti�ed Boolean formula � that is true if and only if a Turing Machine M

accepts the input string w. To get an idea of how to construct �, we �rst construct

a formula �c1;c2;t where c1; c2 are two con�gurations and t is a positive number. We

let the formula to be true if and only if M can go from c1 to c2 in at most t step.

If t = 1, we can construct �c1;c2;t such that one of the following two conditions is

true: 1. c1 equals c2 2. M can go from c1 to c2 in one step

If t>1, we construct �c1;c2;t = 9m18(c3; c4) 2 f(c1;m1); (m1; c2)g[�c3;c4:t=2], where

m1 is a con�guration of M . This formula indicates that the variable represent-

ing the con�gurations c3, c4 can take either the values of the variables of c1 and

m1 or m1 and c2. In either case, the formula �c3;c4:t=2 is true, which means that

M can go from c3 to c4 in at most t=2 steps. To convert the formula �c1;c2;t

into a quanti�ed Boolean formula, we replace 8(c3; c4) 2 f(c1;m1); (m1; c2)g by

8(c3; c4) [(c3; c4) = (c1;m1)[:::] _ (c3; c4) = (m1; c2)! :::]

The formula �cstart;caccept;h, where h = 2df(n), and d is a constant. When t > 1,

we construct � recursively. The size of each level of recursion is O(f(n)), and

the number of levels of recursion is also O(f(n)). Thus, the formula we get after

recursive calls is of size O(f 2(n)), which is polynomially large.

2.9 SAT vs. QBF

Boolean Satis�ability Problem (SAT) are hard to solve. It is believed that no

algorithm can solve all Boolean Satis�ability Problems e�ciently. According to

Cook-Levin theorem, the Boolean Satis�ability Problem is NP-complete, which

means that any problem in class NP is polynomial time reducible to the Boolean

Satis�ability Problem. However, the decision problem of QBF is PSPACE-complete,

11

as shown in the previous section. Thus, according to the de�nition of PSPACE-

complete, the decision problem of QBF is in PSPACE and is PSPACE hard. Since

NP � PSPACE and NP is believed to be not equal to PSPACE, we know that

PSPACE problems are harder than NP problems. That is to say, the decision

problems of QBF are even harder than satis�ability problems.

2.10 QBF solvers vs. SAT solvers

outweighs the disadvantage in practice [6]. Thus, in this paper, we use GhostQ, a

QBF solver which accepts non-CNF input, to solve decision problems of QBF.

2.11 A QBF solver: GhostQ

Syntax: The input to the QhostQ solver is a QCIR formula. QCIR formulas are

de�ned by the BNF grammar below. (The listing of the grammar is reproduced

from [7].)

13

(1) y1 = true, y2 = true

(2) y1 = true, y2 = false

(3) y1 = false, y2 = true

(4) y1 = false, y2 = false

Since x1 = false, x2 = true, we have x1 � x2 � true. Thus, we only need to check

if � = (y1 ^ y2) _ (:y1 ^ :y2) _ (y1 ^ :x1) _ (y2 ^ :x1) is true in the 4 cases above

when x1 = false, x2 = true. Since � is a disjunction of 4 conjunctions, � would be

true if the value of one of its conjunction is true.

(1) If y1 = true, y2 = true, then y1 ^ y2 � true. Thus, � is true.

(2) If y1 = true, y2 = false, since x1 is false, then y1 ^ :x1 � true. Thus, � is

true.

(3) If y1 = false, y2 = true, since x1 is false, then y2 ^ :x1 � true. Thus, � is

true.

(4) If y1 = false, y2 = false, then :y1 ^ :y2 � true. Thus, � is true.

Thus, x1 = false, x2 = true is a solution to the formula1

3. Solve simple geography games

3.1 Introduction

In a geography game, two players take turns to name cities from all over the

For example, the following is a directed graph with vertex 0 as the starting node.

The graph has starting node 0 and three ending nodes. The maximum num-

ber of rounds the game can last is 3. We use x; y; z to denote possible moves at

the �rst, second and third round of the geography game. Let 1,2 3 be the index

of possible ways of move at each round. Let’s assume player 1 plays the �rst

step of the game. The purpose of the game is to decide whether the �rst player

has a winning strategy. If he has a strategy to win, then we need to �nd the

winning strategy. For geography games, a winning strategy for player 1 means

that player 1 can successfully reply to all of player 2’s replies. From the graph,

17

we could see that at the �rst round, player 1 has 2 possible moves: x1 or x2.

The input .txt �le for our Python program looks like:

3

0 1 2

1 0 3 4

2 0 5

3 1 6

4 1 7

5 2

6 3

7 4
20

In the �rst row, 3 is the maximum number of rounds the game (represented

by the above directed graph) can last. The second row means that from node 0,

players can go to node 1 or node 2. The rest rows in the .txt �le can be interpreted

in similar way.

(x3 1 _ x3 2 _ x3 3 _ x3 4 _ x3 5 _ x3 6 _ x3 7)

Condition 2 can be encoded as the following:

(�x1 1 _ �x1 2) ^ (:x1 1 _ :x1 3) ^ (:x1 1 _ :x1 4)^ (:x1 1 _ :x1 5)^ (:x1 1 _

:x1 6)^ (:x1 1 _ :x1 7)^ (:x1 2 _ :x1 3) ^ (:x1 2 _ :x1 4) ^ (:x1 2 _ :x1 5)^

(:x1 2_:x1 6)^ (:x1 2_:x1 7)^ (:x1 3_:x1 4)^ (:x1 3_:x1 5)^ (:x1 3_:x1 6)^

(:x1 3_:x1 7)^ (:x1 4_:x1 5)^ (:x1 4_:x1 6)^ (:x1 4_:x1 7)^ (:x1 5_:x1 6)^

(:x1 5 _ :x1 7)^ (:x1 6 _ :x1 7)

b. The node visited at a certain level was not visited at all previous levels

This constraint can be encoded as the following:

(:x1 1 _ :x2 1) ^ (:x1 2 _ :x2 2) ^ (:x1 3 _ :x2 3) ^ (:x1 4 _ :x2 4)^ (:x1 5 _

:x2 5)^ (:x1 6 _ :x2 6)^ (:x1 7 _ :x2 7)^ (:x1 1 _ :x3 1)^ (:x1 2 _ :x3 2)^

(:x1 3_:x3 3) ^ (:x1 4_:x3 4)^ (:x1 5_:x3 5)^ (:x1 6_:x3 6)^ (:x1 7_:x3 7)^

(:x2 1_:x3 1)^ (:x2 2_:x3 2) ^ (:x2 3_:x3 3) ^ (:x2 4_:x3 4)^ (:x2 5_:x3 5)^

(:x2 6 _ :x3 6)^ (:x2 7 _ :x3 7)

c. The node visited at a certain level is adjacent to the node visited at the

previous level

This constraint can be encoded as the following:

(x2 1 ! (x1 3 _ x1 4))^ (x2 2 ! x1 5)^ (x2 3 ! (x1 1 _ x1 6))^ (x2 4 ! (x1 1 _

x1 7))^ (x2 5 ! x1 2)^ (x2 6 ! x1 3)^ (x2 7 ! x1 4)^ (x3 1 ! (x2 3 _ x2 4))^

(x3 2 ! x2 5)^ (x3 3 ! (x2 1 _ x2 6))^ (x3 4 ! (x2 1 _ x2 7))^ (x3

:

x 2

)

7 xx2

4! x:2

6! x

3.5 Result

a. Output

We run GhostQ with the QCIR �le we have generated for the directed graph

on page 19 and get a cqbf �le which contains the following:

Seed: 1. true. Bt: 1, D: 5. R: 0, P: 378, w: 448, C: 0, T: 0.000 s. true()

Interpretation: The �rst "true" after "Seed" means that there exists a winning

strategy for player 1 for the geography game.

To �nd out the winning strategy, we run GhostQ with the cqbf �le to gener-

ate the �le which contains the strategy:

list(list(x1 1, true()), list(x1 2, false()), list(x1 3, false()),

list(x1 4, false()), list(x1 5, false()), list(x1 6, false()),

list(x1 7, false()), list(x3 1, false()), list(x3 2, false()),

list(x3 3), list(x3 4, false()), list(x3 5, false()),

list(x3 6, ite(x2 4, false(), true())),

list(x3 7, ite(x2 4, true(), false())))

b. Interpretation

According to the output above, the winning strategy for player 1 is the following:

x1 1, true() means that player1 should go to node 1 at the �rst round.

list(x3 6, ite(x2 4, false(), true())) means that if player 2 does not go to node 4 at

the second round, then player 1 should go to node 6 at the second round. This is

the same as if player 1 goes to node 3 at the second round, then player 1 should go

to node 6 at the third round because at the second round, player 2 can only go to

node 3 if he does not go to node 4 given that player 1 goes to node 1 at the �rst

23

round.

list(x3 7, ite(x2 4, true(), false())) means that if player 2 goes to node 4 at the

second round, then player 1 should go to node 6 at the second round.

geography game can last increases to around 10, GhostQ starts to run slowly with

our QCIR input. When the QCIR �le becomes too large, GhostQ may fail due to

the lack of stack space.

3.6 Game Interface

4. References

[1] Gary William Flake and Eric B. Baum. Rush Hour is PSPACE-complete, or

\Why you should generously tip parking lot attendants". Theoretical Computer

Science, 270(1-2):895-911, January 2002.

[2] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions

with squaring requires exponential space. In Proceedings of the 13th IEEE Sym-

posium on Switching and Automata Theory, pages 125-129. IEEE, New York, 1972.

[3] Michael Sipser, Introduction to the Theory of Computation, Second Edition,

Thomson Course Technology, Boston, 2006.

[4] Frank van Harmelen , Vladimir Lifschitz , Bruce Porter, Handbook of Knowledge

Representation, Elsevier Science, San Diego, 2007.

[5] Kleine Buning, H., and Bubeck, U. 2009. Theory of quanti�ed Boolean formulas.

In Handbook of Satis�ability, volume 185 of Frontiers in Arti�cial Intelligence and

Applications. IOS Press. 735-760.

[6] Non-CNF QBF Solving with QCIR. Charles Jordan, Will Klieber, and Martina

Seidl. In Beyond NP 2016.

[7] QCIR-G14: A Non-Prenex Non-CNF Format for Quanti�ed Boolean Formulas,

QBF Gallery 2014

[8] Formal Veri�cation Using Quanti�ed Boolean Formulas (QBF), William Klieber,

2014

26

