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Abstract

We consider games in which team leaders strategically choose the order of players

sent to the battleÖeld in majoritarian team contests with multiple pairwise battles as

in Fu, Lu, and Pan (2015 American Economic Review). We consider one-shot order-

choice games and battle-by-battle sequential player choice games. We show that as

long as the number of players on each team is the same as the number of battles,

the equilibrium winning probability of a team and the ex ante expected e¤ort of each

player in a multi-battle contest are independent of whether playersíassignments are

one-shot or battle-by-battle sequential. This equilibrium winning probability and ex

ante expected total e¤ort coincide with those where the player matching is chosen

totally randomly with an equal probability lottery by the contest organizer. Finally,

we show how player choices add subtleties to the equivalence result by examples.
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1 Introduction

In their ináuential paper on group contests, Fu, Lu, and Pan (2015) analyze a multi-battle

team contest in which players from two rival teams form pairwise matches to compete in



ton and Romano (1998) under the assumption that each individual match has an exogenously

Öxed winning probability. Interestingly, they show that there is a mixed strategy equilibrium

in which both teams assign the same probability to every ordering of the players, and that the

expected winning probability is unique (von Neumannís minimax theorem in a two-person



winning probability of a team in the totally mixed equilibrium in Hamilton and Romano

(1998) is the same as that where the contest organizer chooses a matching of players totally

randomly (Proposition 1). Using this result, we show that the totally mixed strategy Nash

equilibrium in Hamilton and Romano (1998) extends to a one-shot order choice game in

the Fu, Lu, and Pan multi-battle contest environment in which each playerís e¤ort level is

endogenously determined, and that the expected winning probability of a team is the same

when the contest organizer chooses a matching of players totally randomly (Theorem 1).

Although Fu, Lu, and Pan (2015) assume that the pairwise player matching in their multi-

battle contests is Öxed, we show that their invariance result regarding the outcome (winning

probability) of each pairwise battle is more general than tható as long as a pair of players

are matched in one of the multiple battles in a team contest, the expected outcome (winning

probability) stays the same, irrespective of the rest of the matches. Thus, for any realization

of a matching as a result of (mixed strategy) equilibrium, the history independence result

for the winning probability of each pairwise match in Fu, Lu, and, Pan (2015) still follows,

resulting in the Hamilton-Romano totally random equilibrium.

More signiÖcantly, we extend the equivalence results in Fu, Lu, and Pan (2015) to a

sequential battle-by-battle player-choice game. Here, the argument is much more involvedó

it is not a simple extension of sequential battles in Fu, Lu, and Pan (2015). At each subgame,

the team leaders Örst choose players for the next battle, and then these players choose their

e¤ort levels. Thus, these players need to make a choice by foreseeing the outcomes in the

subsequent subgames after the realization of the current battleís outcome. We will show, by

backward induction arguments, that the teamís ex ante winning probability in each subgame

is the same as under the totally random matching of the remaining players by the contest

organizer, thus its ex ante winning probability of the whole sequential battle-by-battle game

is also the same as the ones under the Hamilton-Romano totally random Nash equilibrium

in one-shot ordering choice game (Theorem 2). As a corollary, we can say that the ex ante

expected equilibrium e¤ort of each player is invariant of the type of player choice gameó one-
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shot or sequential, since all matchings of players occur with the same ex ante probabilities

in both equilibria. Thus, we add another invariance result to Fu, Lu, and Pan (2015).

In the next subsection, we provide a brief literature review. In Section 2, we will start with

a three-battle contest example with exogenously Öxed winning probabilities for each pairwise

match between players from the two teams. This illustrates the equivalence between the

outcome (ex ante team winning probability) of the one-shot game and that of the sequential

move game. In Section 3, we introduce the general model using matching language and

replicate Hamilton and Romanoís (1998) result by using matching theory (Proposition 1).

Then, in Section 4, we endogenize the winning probability of each race and show that the

same results hold for both the one-shot and sequential ordering choice game (Theorems 1

and 2, and Corollary 1). In Section 5, we discuss the boundary of our result using several

extensions and examples.

1.1 Related Literature

Our paper contributes to the burgeo2(r)11(o)38(v)11(i)6(-4108rb)11(u)11((u)181(u)11,d14(a)13(t)8(.)]TJ/a(s)-413(t)8(h)h)11(e)-13(t)8(h)]TJ/.7.





and thus the winning chance in each battle is independent of how many games were won/lost

before that battle.



payo¤ (winning probability) matrix for leader A:

Leader B

Leader A

123 132 213 231 312 321

123 � �  � � �

132 � � �  � �

213  � � � � �

231 �  � � � �

312 � � � � � 

321 � � � �  �

where, for example, � = q11q22q33 + q11q22 (1� q33) + (1� q11) q22q33 + q11 (1� q22) q33 and

�; ; �; �; � are similarly deÖned. Notice that �; �; ; �; �; � show up exactly once for each row

and column (though some of them may take the same values).

Now, assume that leader B plays all pure strategies with probability 1





between choosing players 1, 2, or 3 in the Örst round, and in the second round he chooses the

rest of the orderings with probability 1
2

for each (this is equivalent to choosing a player from

the two remaining players with probability 1
2
). Clearly, leader A will place probability 1

3
for

each of his three players in the Örst round. His equilibrium payo¤ is again �PA. This discus-

sion shows that the sequential game outcome is the same as the simultaneous game outcome.

By induction, we can see that the argument works for any (odd) number of players.�

3 One-Shot Ordering Choice Game with Exogenous

Winning Probabilitiesó the Hamilton-Romano Re-

sult

There are two teams, A and B. Each team has 2n + 1 players where n 2 N . The whole

competition consists of 2n+1 sequential (or simultaneous) head-to-head battles. The winning

team is the one that wins n+1 battles. There is a team leader in charge of deciding the order



We assume that the winning probability of each match of players from teams A and

B is independent of how other players are matched and which player wins. Team Aís

playersíwinning probabilities when they are matched with each of the players on team B

are exogenously given by5

Q =

0BBB@
qi1j1 � � � qi1j2n+1

...
. . .

...

qi2n+1j1 � � � qi2n+1j2n+1

1CCCA
where a generic match is denoted by (i; j) with team Aís (iís) winning probability being

qij. This Q matrix is perfectly general. We allow for the cases in which player i1 does well

against most of the players on team B, but i1 somehow always loses against j2n+1.

The static nature of the winning probability matrix Q implies that the payo¤s of this

game depend only on the resulting matching, i.e., two strategy proÖles that lead to the

same matching will result in identical payo¤s for both teams. Denote the expected payo¤s

from a given matching for each team by ~P A(�) (and ~P B(�) = 1� ~P A(�)) accordingly. Let

W =
�

S 2 2f1;2;:::;2n+1g : jSj � n + 1
	

.

~P A (�) �
X
S2W

 Y
r2S

�
qir�(ir)

�
�
Y
r 62S

�
1� qir�(ir)

�!
:

There are (2n + 1)! strategy proÖles
�
�A; �B

�
2 �A � �B that achieve the same matching

� 2 M(NA; NB), where M(NA; NB) denotes the set of all possible matchings. Also note

that there are (2n + 1)! elements in M and ((2n + 1)!)2 elements in �A � �B. We now

consider team Aís winning probability when there exists a contest organizer who picks a

5In the next section, we endogenize winning probabilities in battles by considering a multi-battle contest
game following Fu, Lu, and Pan (2015).
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matching totally randomly to be

�P A � 1

(2n + 1)!

X
�2M(NA;NB)

~P A(�):

Since the corresponding matching for any given combination of (�A; �B) is unique, we

can slightly abuse the notation to let � : �A��B ! M(NA; NB) be the matching generated

from permutations
�
�A; �B

�
, such that �(i) = �B(

�
�A
��1

(i)) for all i 2 NA. Then, Aís ex

ante winning probability given by (�A; �B) can be written as

P A(�A; �B) � ~P A(�(�A; �B)):

Similarly, deÖne P B(�A; �B). It is clear that P A(�A; �B) + P B(�A; �B) = 1.

Thus, the game with two team leaders who maximize their teamsíwinning probability

is a zero-sum game with strategy sets �A and �B, and with a �A � �B payo¤ matrix

P �
�
P A(�A; �B)

�
�A2�A;�B2�B . In this case, a mixed strategy is mv : �v ll i B



for any �B 2 �B. Therefore, we obtain the result by Hamilton and Romano (1998).

Proposition 1 (Hamilton and Romano 1998) Suppose that the winning probabilities of all

pairwise battles are described by a static matrix Q. A total randomization over all orderings

of players with equal probability ( �mA; �mB) is a Nash equilibrium of the one-shot ordering-

choice game. Moreover, in every Nash equilibrium of the game, team Aís winning probability,

�P A, is exactly the same as the one when the contest organizer picks a matching of players

totally randomly.

Note that there are many other Nash equilibria in the one-shot ordering choice game,

although the equilibrium payo¤s are unique, as is shown in von Neumann (1928). For

example, consider the following 2n + 1 strategies: �v
1 = (i1; :::; i2n+1), �v

2 = (i2n+1; i1; :::; i2n),

�v
2 = (i2n; i2n+1; i1; :::; i2n�1),..., and �v

2n+1 = (i2; :::; i2n+1; i1). Let m̂v be m̂v(�v
` ) = 1

2n+1
for

all ` = 1; :::; 2n + 1 and m̂v(�v) = 0 for any other �v. If team B uses strategy m̂B, then each

player on team A is matched with all of the team B players with equal probability 1
2n+1

.

Thus, team A is indi¤erent between all strategies in �A. Therefore, m̂A is one of the best

responses to m̂B, and
�
m̂A; m̂B

�
is a Nash equilibrium, too. There are many other ways to

select 2n + 1



behavior is exogenous. In this section, we relax this assumption following the arguments

in Fu, Lu, and Pan (2015). We again assume that
��NA

�� =
��NB

�� = 2n + 1 and that the

leaders of teams A and B simultaneously choose the player ordering at the beginning of

the contest. Consider a battle between players i 2 NA and j 2 NB. Although the same

result applies to any of the examples listed in their paper, we will focus on a variation of

a complete-information generalized Tullock contest (Model 6 in Fu, Lu, and Pan 2015). To

apply their invariance result, assume that (ij-pair-speciÖc) contest success function qij(xi; xj)

is (i) homogenous of degree zero in xi and xj, (ii) @qij

@xi
> 0 and



Proof. The Örst order conditions are

@qij(xi; xj)

@xi

Vi � ci = 0 (1)

and

�@qij(xi; xj)

@xj

Vj � cj = 0 (2)

Since qij(xi; xj) is homogenous of degree zero, we have a Euler equation

@qij(xi; xj)

@xi

xi +
@qij(xi; xj)

@xj

xj = 0:

These three equations imply
xi

xj

=
Vicj

Vjci

:

Thus, team Aís equilibrium winning probability is written as

�qij = qij(
Vi

ci

;
Vj

cj

):

Since qij(xi; xj) is homogenous of degree zero, @qij(xi;xj)

@xi
and @qij(xi;xj)

@xj
are homogeneous of

degree -1. Thus, we have
@qij(pxi; pxj)

@ (pxi)
=

1

p

@qij(xi; xj)

@xi

for all p > 0 (the same result holds for xj). This implies

@qij(pxi; pxj)

@ (pxi)
pVi � ci =

@qij(xi; xj)

@xi

Vi � ci = 0:

That is, if (xi; xj) = (x�
i (i; j); x�

j(i; j))



(xi; xj) = (px�
i (i; j); px�

j(i; j)) solves the system of equations

@qij(xi; xj)

@xi

pVi � ci = 0

and

�@qij(xi; xj)

@xj

pVj � cj = 0:

We have completed the proof.�

Thus, as long as conditions (i), (ii), and (iii) are satisÖed, the winning probability of player

i in a battle with player j is intact at �qij, since players i and j face the same probability

of their battle to be pivotal p in every contest with multiple pairwise battles. This is the

Observation 2 in Fu, Lu, and Pan (2015). Denote �Q(NA; NB) = (�qij)i2NA;j2NB to be the

pairwise winning probability of player i on team A against j on team B. Thus, the winning

probability of team A in a multi-battle contest under Öxed matching � is always described

by

~P A (�) �
X
S2W

 Y
r2S

�
�qir�(ir)

�
�
Y
r 62S

�
1� �qir�(ir)

��i



any realized matching � 2 M(NA; NB), in any battle by matched players (i; j) with �(i) = j,

team A wins with probability �qij. Thus, team Aís winning probability matrix is �Q(NA; NB).

This implies that by Proposition 1, (ii) and (iii) must hold.�

4.2 The Battle-by-Battle Player Choice Game

Now, we will consider sequential battle-by-battle player-choice games. Consider a state s 2 S

with s =
�
k; `; h; T A; T B

�
, where k is number of battles left, and ` and h denote the number

of wins that teams A and B need to become the winning team at state s, respectively.

Moreover, T A and T B denote the set of remaining players for teams A and B, respectively,

and S is the set of all states. Note that k = jT Aj = jT Bj and ` + h = k + 1. We use the

functions k(s) = k, `(s) = `, h(s) = s, T A(s) = T A, and T B(s) = T B to indicate the relevant

information at state s =
�
k; `; h; T A; T B

�
. We start with the following deÖnition. In state s,

let

�P A (s) � 1

k(s)!

X
�2M(T A(s);T B(s))

~P (�; k(s); `(s))

where

~P (�; k; `) �
X

S2W (k;`)

 Y
r2S

�
�qir�(ir)

�
�
Y
r 62S

�
1� �qir�(ir)

�!

and

W (k; `) �
�

S 2 2f1;:::;kg : jSj � `
	

:

Note that W (k; `) is the set of winning coalitions when a team needs to win ` out of k

battles. Similar to the previous section, �P A(s) is Aís winning probability when there is a

contest organizer who totally randomly assigns players to battles after the state s. We let

4(T A(s)) and 4(T B(s)) be the sets of mixed actions for leader A and B, respectively, and

deÖne �v : S ! 4(N v) such that �v(s) 2 4(T v(s)) as the mixed strategy of the leader v.

One possible subgame perfect equilibrium strategy is ��v(s) = 1
jT v(s)j(1; 1; :::; 1) 2 4T v(s) for
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v = A; B.

In each state s, we need to consider every possible pair of players in the next battle. For



i and j? The payo¤ functions of players i and j are given as

[qij(xi; xj)�qi0j0 ] Vi � cixi

and

[1� qij(xi; xj)�qi0j0 ] Vj � cjxj;

respectively. The Örst order conditions are

@qij(xi; xj)

@xi

�qi0j0Vi � ci = 0

and

�@qij(xi; xj)

@xj

�qi0j0Vj � cj = 0:

Thus, xi

xj
=

Vicj

Vjci
and qij(

cj

Vj
; ci

Vi
) = �qij. The matrix game of this subgame is described by

1
2

1
2

` = 2 jj0 j0j

1
2

ii0 �qij �qi0j0 �qij0 �qi0j

1
2

i0i �qij0 �qi0j �qij �qi0j0

Clearly, a mixed strategy proÖle with equal probability, (��A(s); ��B(s)), is an equilibrium

and is unique unless �qij �qi0j



members of T A and T B by M(T A; T B). Similarly, denote the set of all possible matchings

between the members of T A and T B in which player i 2 T A is matched to player j 2 T B

by M(T A; T B; (i; j)). Then, the continuation state when player i wins is si
�ij = (k � 1; ` �

1; h; T Anfig; T Bnfjg) and when j wins the state is sj
�ij = (k � 1; `; h� 1; T Anfig; T Bnfjg).

We Örst show that (i) holds for any s with k(s) = k. The payo¤ functions of players i and j

after being matched in state s are

ui = qij(xi; xj) �P A
�
si

�ij

�
Vi + (1� qij(xi; xj)) �P A

�
sj

�ij

�
Vi �



1

k

X
j2T B

�
�qij

�P A(si
�ij) + (1� �qij) �P A(sj

�ij)
�

=
1

k

X
j2T B

24�qij
1

(k � 1)!

X
�2M(T A(si

�ij);T B(si
�ij))

~P (�; k � 1; l � 1)

35
+

1

k

X
j2T B

264(1� �qij)
1

(k � 1)!

X
�2M(T A(sj

�ij);T B(sj
�ij))

~P (�; k � 1; l)

375

=
1

k!

X
j2T B

X
�2M(T A(si

�ij);T B(si
�ij))

�qij
~P (�; k � 1; l � 1)

+
1

k!

X
j2T B

X
�2M(T A(sj

�ij);T B(sj
�ij))

(1� �qij) ~P (�; k � 1; l)

=
1

k!

X
j2T B

X
�2M(T A�fig;T B�fjg)

h
�qij

~P (�; k � 1; l � 1) + (1� �qij) ~P (�; k � 1; l)
i

=
X

j2T B

1

k

24 1

(k � 1)!

X
�2M(T A;T B ;(i;j))

~P (�; k; l)

35 = �P A(s)

where M(T A; T B; (i; j)) is a collection of all matchings � : T A ! T B with �(i) = j.



the same probability 1
(k�1)!

.



state s occurs with probability

P (s) =
X

~�2M(NAnT A(s);NBnT B(s))

X
S2D(2n+1�k(s);n+1�`(s))

Y
r2S

�
�qir ~�(ir)

�
�
Y
r 62S

�
1� �qir ~�(ir)

�
;

player iís expected e¤ort when i is matched with j is

E(xij(i; j)) =
X

s2Sj(i;j)2T A(s)�T B(s)

P (s)p(s; (i; j))x�
i (i; j)

=
X

~�2M(NAnfig;NBnfjg)

X
S2D(2n;n)

Y
r2S

�
�qir ~�(ir)

�
�
Y
r 62S

�
1� �qir ~�(ir)

�
x�

i (i; j):

Thus, the coe¢ cient of x�
i (i; j) is nothing but the probability that this battle becomes pivotal.

This implies that neither a sequential choice nor a one-shot choice makes a di¤erence. Hence,

player iís ex ante expected e¤ort in both cases is

E(xi) =
1

2n + 1

X
j2NB

E(xij(i; j))

=
1

2n + 1

X
j2NB

X
~�2M(NAnfig;NBnfjg)

X
S2fS02f1;:::;2ng:jS0j=ng

Y
r2S

�
�qir ~�(ir)

�
�
Y
r 62S

�
1� �qir ~�(ir)

�
x�

i (i; j);

and Fu, Lu, and Panís (2015) total e¤ort equivalence result extends to our case, too.

Corollary 1. The expected e¤ort level of each player in a one-shot ordering choice game is

equal to the level in a battle-by-battle sequential choice game.

Although we only considered a fully sequential player-choice game in Theorem 2, Fu,

Lu, and Panís (2015) invariance results hold even if the game involves battles with a more

general temporal structure, although the argument gets messier by that (see Appendix for

a formal analysis).
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5 Robustness and Subtleties in Our Results

Here, we consider possible extensions of our model to see the boundaries of our invariance

results. It turns out that the choices of player orderings often add more subtleties for the

results on the expected winning probability of the whole contest and ex ante e¤ort levels.

5.1 Private BeneÖts from Winning Battles

We start with a positive result in an extension discussed in Fu, Lu, and Pan (2015). First,

we consider the case where players get private beneÖts from winning their battle in addition

to their teamís winning the prize. Let players i and j get �i
ij and �j

ij from winning battle

(i; j). Then, players i and jís gross beneÖts ~V i and ~V j are written as

~V i = �i
ij + p(i; j)V i

~V j = �j
ij + p(i; j)V j

where pij > 0 denotes the probability that battle (i; j) becomes pivotal. Since the above

equalities need to hold for any p(i; j)



5.2 Heterogeneous Weights

Unlike in Fu, Lu, and Pan (2015), our player-order choice game does not preserve the in-

variance in a teamís winning probability if battles are weighted unevenly. In the last section

of Fu, Lu, and Pan (2015), they demonstrate the robustness of invariance results that allow

for component battles to carry di¤erent weights. This result follows in their model, since

each battle and the players who play in them are tied up together. However, in our game,

team leaders assign players to each battle. If a certain battle is weighted heavily, team



5.3 Excess Players

Note that we have been assuming that the number of players who participate in the 2n + 1

battles from each team needs to be exactly 2n + 1. Although this assumption is natural in

Fu, Lu, and Pan (2015), it is essential for our equivalence results as we can see from the

following example. For simplicity, we consider a game with an exogenous winning probability

matrix again.

Example 3. Suppose that there are three battles and teams A and B have four and three

players, respectively. We assume the following exogenous probability matrix:

Q =

0BBBBBB@
q11 q12 q13

q21 q22 q23

q31 q32 q33

q41 q42 q43

1CCCCCCA =

0BBBBBB@
0 0:5 0:5

0 0:5 0:5

0 0:5 0:5

0:5 0 0

1CCCCCCA :

That is, player 1 on team B is a dominant player, but players 1, 2, and 3 on team A and

players 2 and 3 on team B are in the exact same league. Player 4 on team A is a weak player,

but is good at dealing with the dominant player 1 on team B (an assassin). In this case, if

team A selects f1; 2; 3g, team A can win only when both players that are not matched with

team Bís dominant player win. Thus, team Aís winning probability is 0:5 � 0:5 = 0:25. If

team A includes the assassin player 4, then it has a positive winning probability only when

the assassin player is matched with the dominant player. This implies that team Aís winning

probability is 1



Örst round, and still has players 2, 3, and 4, while team B has players 1 and 2. Team B

must win the next two races to win the team contest.

second race 3
4

1
4

` = 1 1 2

3
4

2; 3 0:

:

3
44

44



players win, the payo¤ matrix is:

12 21

12 q11q22; (1� q11) (1� q22) q12q21; (1� q12) (1� q21)

21 q21q12; (1� q21) (1� q12) q22q11; (1� q22) (1� q11)

=

12 21



for one star player in team A: her marginal cost is 1. Consider the case where two mediocre

players were matched in battle 1 and the team A player won. Now, two team leaders are

choosing which players play in the second battle. Essentially, team Aís leader only has one

choice: use the star player in the second battle or not. Team A needs to win only one more

game, so even if it loses in the second battle, it can still win with the winning probability of

the third battle. Let i2 and j2 be the second battle players, and i3 and j3 be the third battle

players. Then, the second battleís stake is 1 � qi3j3, and xi2 = (1 � qi3j3)
cj2

(ci2
+cj2)

2 . Thus,

team Aís leader maximizes the following expected total payo¤ in this subgame.

W A2 = 3 (qi2j2 + (1� qi2j2)qi3j3)� xi2 � (1� qi2j2)xi3

= 3

�
cj2

ci2 + cj2

+
ci2

ci2 + cj2

cj3

ci3 + cj3

�
� ci3

ci3 + cj3

cj2

(ci2 + cj2)2 �
ci2

ci2 + cj2

cj3

(ci3 + cj3)2

Thus, the expected total payo¤ by setting ci2 = 1 is

W A2
ci2

=1 = 3

�
2

3
+

1

3
� 1

2

�
� 1

2
� 2

9
� 1

3
� 1

8
= 2:3472

while the one by setting ci3 = 1 is

W A2
ci3

=1 = 3

�
1

2
+

1

2
� 2

3

�
� 1

3
� 1

8
� 2

3
� 2

9
= 2:3102

Thus, the total randomization is not an equilibrium in this subgame. This is because if

the game ends early, the third player does not need to make any e¤ort in a battle-by-battle

player choice game. In contrast, in a one-shot ordering choice game, the total randomization

is still a Nash equilibrium since all three games are played in a one-shot game.8�

8When a team leader maximizes the total team payo¤, the game is no longer a zero-sum game. So, there



6 Conclusions

In this paper, we show that Fu, Lu, and Panís (2015) invariance results extend even if the

team leaders strategically choose the order in which players are sent to the battleÖeld. The

independence of each battleís winning probability extends as long as the zero homogeneity of

the contest success function of each battle is satisÖed. Additionally, somewhat surprisingly,

the total randomization of player choice at any level is the equilibrium strategy irrespective

of whether team leadersí choices are made as one-shot or battle-by-battle decisions. We

also explore the robustness and limitations of our equivalence results by investigating several

extensions: we found that considering ordering choice decisions add additional subtleties to

the model.

Appendix

Here, we formally illustrate the way to show that Theorem 2 and Corollary 1 extend for



tations of set R. For st 2 St, let 4(~�(st)) be the sets of mixed strategies for leader

� = A; B, and deÖne ��
t : St ! 4(~��(st)) such that ��

t (st) 2 (~��(st)) as the mixed

strategy of the leader � at state st. One possible subgame perfect equilibrium strategy is

���
t (st) = 1

j~��(st)j(1; 1; :::; 1) 2 4(~��(st)) for � = A; B, and all t = 1; :::; �t. Finally, for any

action ��
t 2 ~��(st); we denote �R(��

t ) � T �(st) as the set of players involved in the action ��
t .

In order to generalize Theorem 2, we set an induction hypothesis: in each state st 2

St, (i) subgame perfect equilibria generate each possible matching of the leftover players

�t 2 M(T A; T B) occurs with the same probability, (ii) for all pair of players (i; j) 2 T A �

T B, equilibrium winning probability of i is �qij�



Aís expected winning probability in the beginning of each state st 2 St is �P A(st).To show

this formally, Örst we deÖne �W (k; �) � fS 2 2f1;:::;kg j jSj = �g and

�P (�t; �) =
X

S2 �W (kt;�)

 Y
r2S

�qir�t(it)

Y
r =2S

(1� �qir�t(ir))

!
;

which is probability of winning � out of nt battles given a matching �t. By the induction

assumptions, the expected payo¤.0569(i)6(s)-374(p)12(r)11(o)10(b)12(a)10(b)11(i)6(l)6(i)7(t)3F22 11.955 T6
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