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Abstract

We develop a theory of endogenous uncertainty in which the ability of investors to
learn about rm-level fundamentals is impaired during nancial crises. At the same
time, higher uncertainty reinforces nancial distress. Through this two-way feedback
loop, a temporary nancial shock can cause a persistent reduction in risky lending,
output, and employment that coincides with increased uncertainty, default rates, credit
spreads and disagreement among forecasters. We embed our mechanism into standard
real business cycle and New-Keynesian models and show how it generates endogenous
and internally persistent processes for the e ciency and labor wedges.
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1 Introduction

Financial crises often entail deep and long-lasting recessions (Reinhart and Rogo , 2009; Hall,
2014; Ball, 2014). A common view gives a central role to uncertainty, both as an ampli er of
nancial distress and a source of slow recovery.® This paper explores this idea, developing a
theory that formalizes the interaction between nancial constraints and uncertainty.
Our theory provides a narrative of how a temporary shock emanates from the nancial
sector, is reinforced by endogenously rising uncertainty, and ultimately develops into a long-



the persistence of the output response in our model is much greater than that, with a half-life
of 16 quarters. The discrepancy is caused entirely by the interaction between endogenous
uncertainty and nancial frictions: when shutting down the former, the half life of the output
response falls to 4 quarters, mirroring the half-life of the exogenous nancial shock.

For illustrative purposes, our baseline model is stylized and does not feature capital.
Nevertheless, as we demonstrate in three extensions, it is straightforward to incorporate our
mechanism into richer environments. First, we explore a variant of our model, in which a
fraction of rms does not rely on external funds to nance their projects. While the presence
of such rms scales down the overall impact of nancial shocks, we nd that it changes little
about their propagation through endogenous uncertainty and does not reduce the internal
persistence.

Second, we extend our baseline model to include investment and capital. Interestingly,
we show that our model | with its rm-level heterogeneity and two-way interaction between
lending and beliefs about rm potential | is observationally equivalent to a standard real
business cycle (RBC) model with endogenous processes for the economy’s \e ciency wedge"
and \resource wedge™, in the spirit of Chari, Kehoe and McGrattan (2007). These wedges
arising from our mechanism are di erent from the ones in existing models based on nancial
frictions such as Buera and Moll (2015) in their internal persistence after a nancial shock.

Third, we develop a New Keynesian version of our model, with nominal rigidities and
hand-to-mouth households, following Gal , Lopez-Salido and Valles (2007) and Bilbiie (2008).
We show that in this extension, as well, nancial shocks lead to a protracted decline in output
due to endogenous uncertainty. However, in contrast to our baseline model, the propagation
now runs through the demand side, driven by a reduction in household income and consumer
spending, manifesting itself as a persistent increase in the economy’s labor wedge.

While the aggregate dynamics of the model are fully captured by endogenous wedges,
our model also has implications at the rm level. In particular, as mentioned above, rising
uncertainty helps explain a variety of nancial market characteristics associated with nancial
crises: increased credit spreads, a rise in default rates, an increased cross-sectional dispersion
of rm sales, and high levels of disagreement among forecasters about rm-level pro tability.

To gauge the quantitative potential of our endogenous uncertainty mechanism, we estimate
the RBC version of our model to historical data on U.S. business cycles, allowing for three
typical business cycle shocks and the nancial shock. We nd that typical recessions, driven
by the standard business cycle shocks, look similar with and without endogenous uncertainty.
Recessions partly caused by nancial shocks, however, are signi cantly more severe in the
economy with endogenous uncertainty compared to an exogenous uncertainty counterfactual.
In case of the Great Recession, we nd that without endogenous uncertainty, the peak-to-



trough drop in output would have been about half of what it was, and output would have
fully recovered by 2010.
All uncertainty in our model is about rm-level fundamentals, not aggregate fundamentals.



levels of uncertainty are particularly prevalent during nancial crises.*

In our model, the emergence of uncertainty due to nancial distress interacts with the
propagation of uncertainty through the nancial sector. In support of such a nancial
transmission channel, Gilchrist, Sim and Zakrajsek (2016) present evidence that uncertainty
strongly a ects investment via increasing credit spreads, but has virtually no impact on
investment when controlling for credit spreads. The nancial transmission of uncertainty
relates our model to a recent literature around Christiano, Motto and Rostagno (2014),
Arellano, Bai and Kehoe (2019), and Gilchrist, Sim and Zakrajsek (2016), which stresses the
importance of uncertainty or risk shocks in the nancial sector, but treats these shocks as
exogenous.®

The predictions of our model are also broadly consistent with a recent empirical literature
that measures the e ects of tightening nancial constraints. Giroud and Mueller (2017)
show that establishments of rms that are more likely to be nancially constrained were
heavily a ected by falling collateral values (house prices). In fact, they show that the entire
correlation of employment loss and house prices is explained by these arguably nancially
constrained rms. Similar in spirit, Chodorow-Reich (2013) and Huber (2018) document that

rms borrowing from less healthy lenders experience relatively steeper declines in employment
during the nancial crisis, consistent with the interpretation that these rms faced tighter
nancial constraints. Our model clari es how an intense but relatively short-lived nancial
crisis can still translate into persistent nancial constraints for rms, making it much harder



2 Baseline Model

We study our mechanism in a neoclassical economy with a representative household, a
competitive nal goods sector, and a continuum of monopolistically competitive intermediate-
goods rms. The latter are partially funded by a competitive banking sector. Time is discrete
with an in nite horizon and is indexed by t. To illustrate the mechanism, our baseline
model abstracts from capital, nominal rigidity and non-credit based funding. We study the
consequences of adding those features to our model in Sections 5 and 6.

2.1 Environment

Firms. A competitive nal-good sector combines intermediate goods, fYi.tQiz[0:1], to produce
nal output, Y¢, using the technology

where > 1 is the elasticity of substitution between input varieties. Pro t maximization
yields the demand for input i with price p;.,

Yit = YiPie s (@Y)



Conditional on period-t productivities and given a real wage w;, rms choose p; to

maximize operating pro ts,
it PitYir Wil 4)

subject to (1) and (2).
Which rm produces using which of the two productivity levels is determined by two
interacting frictions: a nancial friction and an informational friction. We explain them next,

beginning with the nancial friction.

Financial friction. Each period has two sub-periods, a morning and an afternoon.

In the morning, rms choose whether to operate the baseline technology, with produc-
tivity A, or the risky technology, with productivity A;;. Operating the baseline technology
entails an upfront operating cost of ~ > 0, whereas operating the risky technology entails a
larger upfront cost of > ~ > 0. Importantly, the technology choice is made subject to an
information set 1. (detailed below), which does not contain the current realization of A;..
This is why the \risky technology™ is indeed risky. Conditional on their technology choice,

rms then approach banks to nance the upfront cost ;.2 f ; Q.

In the afternoon, rms produce, goods are sold, wages are being paid, loans are repaid,
and the household consumes.

We assume that a liquidity constraint prevents rms from using their afternoon pro ts
to pay for the upfront cost ;.. Instead, rms borrow from a competitive banking sector in
the morning, at an interest rate r;., and repay their loans in the afternoon. When a rm is
unable to do so due to its operating pro ts falling short of the repayment,

it < (@ +riy) v Q)

it defaults on its loan. We assume that in case of default, banks need to pay a cost verifying the
rms’ default a la Townsend (1979), amounting to the rm’s pro ts ;.5 For simplicity, we
assume that these costs are not resource costs and instead transfer from banks to households.
If a rm defaults, it gets a bankruptcy ag that precludes it from obtaining risky loans,
and thus precludes it from operating the risky technology. At the beginning of each period,
bankruptcy ags are removed with an exogenous recovery probability 2 (0; 1].
The interest rate



solution to the zero pro t condition’

(1 + ri;t) 1 Pt it < (1 + ri;t) it



banks’ surplus T2k, Taken together, T; can be written as
Z 1
Te= (ix  gpdi
0

Information friction. We consider a simple information structure where all learning is
public and there is no aggregate uncertainty; i.e., agents have complete information about
the history of  and the shape of the cross-sectional distribution over A;.;. The only source
of uncertainty is a lack of information about the productivities of the risky technology of each
individual rm. Speci cally, each period, after the technology adoption choice and before

rms set prices, all agents observe the realized risky productivities for all rms adopting
the risky technology. By contrast, for rms adopting the baseline technology, current risky
productivities are only observed with an exogenous probability 2 [0;1), independently
across rms, and remain otherwise unknown. Let B; denote the set of rms that either
adopt the risky technology in period t or for which A;. is exogenously revealed. Then the
information available to agents in the morning of date t is

I: = ¢ [LTAit 1028, . [ 1t 1

These assumptions imply that the common belief entertained about each rm’s risky
productivity is log-normal at all times, allowing us to track the public beliefs in terms of each
rms’ expected log-productivity and the corresponding uncertainty,

it EdlogAigli it Varglog Al

Timing and market clearing. The timing of events within each period can be summarized
as follows:

e Morning: Bankruptcy ags are removed with probability ; rms choose their technol-
ogy; rms approach banks for funding and pay the operating cost j..

« Afternoon: Risky productivities A are revealed for all rms operating the risky
technology and with probability for all other rms; rms hire labor, produce, set
prices, and repay loans; if rms are unable to repay, they default and get a bankruptcy

ag; dividends and transfers are paid; the household consumes.

In equilibrium, the representative household chooses C;, L; and B; to maximize utility
(7), rms choose their technology and set prices to maximize pro ts, banks lend if their zero
pro t condition can be satis ed at the competitive default premium, and markets clear: labor



R
markets satisfy 01 L.« di = L, goods markets satisfy
Z 1
Yi=C¢ + it di; (©)]
0
and asset markets satisfy B,y = 0 at all times t.

Below, we work with a parameterization of the model in which rms using the baseline
technology always make positive pro ts; and in which rms that can get a bank loan for the
risky technology always nd it optimal to do so0.° The former assumption ensures that rms
prefer operating the baseline technology to exiting; the latter assumption ensures that the

nancial friction has an impact on rm behavior.

Discussion. Two ingredients are at the core of our model. First, rms rely, at least in
part, on external nance, and access to external nance hinges on the perceived quality
and risk of their production potential. We model this by assuming that there is an upfront
operating cost that needs to be nanced through loans. In this environment, more pessimistic
and/or uncertain beliefs by nancial markets naturally reduce access to loans, because they
translate into greater default risk, raising credit spreads.’® In our baseline model all rms
have ex-ante the same reliance on external nance. Ex-post, the ones that are perceived as
more productive have no issues securing funding at costs close to the internal bank rate .
In Section 5.3, we demonstrate that our mechanism is robust to also allowing for ex-ante
heterogeneity in reliance on external funding. We do so by letting some rms fund the
operating cost frictionlessly (e.g., due to equity, retained earnings or available safe collateral).

Second, a lack of funding leads to a lack of information about rms’ potential productivity.
In our model, rms that do not operate the risky technology generate less information about
its productivity A;¢. In reality, the risky technology captures a rm’s potential, which is
ex-ante uncertain. The longer a rm remains underfunded, unable to reach and test its
potential, the less clear it becomes how pro table it actually is. Observe that A;. need not
correspond to productivity in reality. It could equally well capture rm-speci ¢ demand
shifters; the two are isomorphic from a modeling perspective.

Finally, while we formalize the impact of being constrained in terms of rm productivity,
one may equivalently think of it in terms of variations in factor utilization or di erences
in returns across a rm’s projects. When we calibrate the model in Section 4.1, we will

®We can state the former assumption formally as A (1) lYt:Wt s 1+ )~. The latter
assumption is more complex as rms internalize how uncertainty a ects future access to credit and pro ts.
We verify that it holds numerically in our calibration.

10As explored in an earlier draft of this paper, a similar logic applies if rms are funded through equity
and equity investors are not fully diversi ed (Straub and Ulbricht, 2018).






Proposition 1. De ne the (risky) lending threshold as
¢ log (1+ ) log Ye=w, * +log (1)

Firm i obtains funding for the risky technology if and only if (i) it has no bankruptcy ag,
and (ii) the belief ( jt; i) satis es

it \Y ( i;t) t (13)
where V( ) is de ned as
) n . pP_ (0]
V() sz%fll] %) log x

Banks are willing to fund all risky projects for which ;. V( i) exceeds a time-varying
threshold ¢, which we henceforth refer to as (risky) lending threshold. We have V(0) = 0
and V() >0 for that is not too large, capturing that default becomes more likely as
uncertainty increases, which in turn increases default premia and reduces the willingness of
banks to lend. Only in the pathological case where default is more likely than repayment,
V may decrease in . Henceforth, we assume that is low enough so that V increases for

2=(1  ?), which is easily satis ed numerically for reasonable unconditional variances
of log revenue productivity documented in the data.*

Belief dynamics. The cross-sectional distribution of beliefs ( i; i) about productivities
Ai. is a crucial state variable in our economy. From (3) we can derive the law of motion of
beliefs about each rm i as

8
< . -
log A + (1 logA ifi2B
ey gAix+ ( ) log " t (14)
B it + (l )IOgA ifi 2 Bt
8
= 2 if i 2 B;

(15)

it+1 —

2 .+ 2 ifi2Bg



General equilibrium and steady state. Each rm i has an idiosyncratic state that is
given by Si+  (Ait; it; it i) Where dix 2 T0;1g is rm i’s bankruptcy ag. In any given
period, rm i’s output and labor demand, Y;.. and L;., are functions of its state S;.; as well
as of the aggregates ( ¢; Wg; Y¢),
. Y Y
: 1 W, 1 W,
where A is rm i’s technology, determined by Proposition 1. Aggregating across rms, we
nd that
wy = (1 HhA:  and Y= Al (16)
where z . L

A A di (17)
0

corresponds to the e ciency wedge in the economy, in the spirit of Chari, Kehoe and
McGrattan (2007), and 1 1 stems from the monopoly distortion induced by monopolistic
competition. Together with the rst order condition for household labor supply, w; = Ltl: Cs,
we nd Z,

1 HA = LY Al pedi (18)
0

Conditional on rms’ technology choices, tEis equation admits a unique positive solution for
L¢. The solution always satis es A¢L; > di. Thus, output Yy is uniquely determined
given As.

1
0



3 Endogenous Uncertainty and Lending

We are now ready to study the interaction between credit and learning that is at the core



Figure 1: Phase diagram for rm-level beliefs in the absence of shocks

Note. Thin gray lines depict ( V () = )-contours; Z-shaped blue lines are the constant- j.¢ locus; vertical red lines are the
constant- ;¢ locus. Arrowheads represent one period in time along the plotted trajectories. Parameterization as in Section 4.1;

c.f. Footnote 12. Left: Case with a unique steady state ( < 7). Right: Case with multiple steady states (_ < < 7).

reduce uncertainty.

The \Z" shaped pattern visible in Figure 1 captures the self-reinforcing nature of endoge-
nous uncertainty in our model. When uncertainty is high today, a rm is less likely to receive
funding for the risky technology, which further increases uncertainty going forward. When
is neither too low nor too high, this e ect can be su ciently strong to generate two steady
states in the phase diagram. As our next proposition shows, and Figure 1 illustrates, this



induced along the path. Along the rightmost trajectory, the rm is initially unconstrained and
beliefs immediately adjust to the unique steady state. By contrast, along the two trajectories
starting to the left of the gray contour line, the rm is initially denied risky funding so that
learning breaks down. Accordingly, mean beliefs ;. only slowly converge to the unconditional
prior, whereas uncertainty accumulates to higher and higher levels as information about past
levels of A;.: becomes less and less useful for predicting current productivity. This, in turn,
reinforces tight credit constraints. Hence, even though the steady state is unique, a rm can
nd itself lacking full access to credit for a signi cant period of time, unable to invest in their
risky technology.
More generally, the duration without access to risky funding is governed by a \race"
between the mean-reversion in . and rising uncertainty. Consider a marginally constrained
rm with ;. just below V( ?) + . Stepping forward in time by one period, it will be
constrained at t + 1 if and only if

V(A v(@+ %) H<@ ) logA):

Hence, the marginally constrained rm will lose access to credit for multiple periods if either
aggregate credit conditions are su ciently bad (



Figure 2: Dynamic response to a nancial shock at t = 1 and a subsequent recovery at t =2

Note. Arrowheads represent one period in time along the plotted trajectory. Parameterization as in Section 4.1, with o = 245,

s 0, set to the value of at the aggregate steady state, and 1 = S+ 0:1.

Figure 3: Impact of temporary nancial shock on rm dynamics

Note. Black solid line: E ect of one time disruption in credit, o > , in period t = 0 on the average evolution of a rm close to

the funding threshold, logA= +V 2 . Red dashed line: Same evolution, but xing uncertainty exogenously at j.t = 2.

Parameterization as in Section 4.1.

solid gray line), even a reversal of ¢ to does not end the feedback loop, generating internal
persistence of the shock.!®
Figure 3 repeats the experiment in our model with all rm-level shocks active, showing
how the average evolution across di erent sample paths is a ected by a one-period long
disruption in credit. To isolate the contribution of the endogenous-uncertainty channel, we
contrast the model’s response (solid black lines) with a counterfactual response, in which the
rm su ers the same exogenous nancial shock but uncertainty is xed at its lower bound,
= 2 (dashed red lines). We call this the exogenous uncertainty model as a contrast with

3Here we initialized the rm close enough to the constraint so that uncertainty surpasses the original
( V()= )-contour line after one period. In general, an exogenous disruption in credit lasting for T 1

periods cause internal persistence beyond the exogenous shock if TlogA < o+ V 11 22T 2.

16



our endogenous uncertainty model. The exogenous uncertainty model will serve as a useful
benchmark for the remainder of this paper.

In both cases, output initially drops due to the switch in technologies for the duration
of the nancial shock. The di erence between our model and the exogenous-uncertainty
counterfactual emerges at t = 1. Whereas output recovers in the counterfactual once
access to credit is restored, the rm continues to be denied funding in the presence of
endogenously increased uncertainty. The disruption in credit continues until either ;.. crosses
the ( V( ) = )-contour in Figure 2 or the potential productivity A;. is exogenously
revealed (with probability ). In both cases, uncertainty drops to 2 and the rm switches
back to the risky technology.

The dynamics shown in Figure 3 are reminiscent of the evidence in Huber (2018), who
shows that a quasi-exogenous temporary nancial shock can have a long-lasting e ect on rm
performance. In particular, Huber (2018) shows that the gap in employment between rms
that were exposed to the shock and rms that were not remains elevated for two years after
the shock.

3.3 Informational Externalities

We conclude this section with a brief discussion of e ciency. Our speci cation of credit
constraints implies two sources of ine ciency. First, credit access is statically ine cient due
to the presence of default costs, which give rise to the usual static wedge between supply and
demand for credit.'* Second, the combination of endogenous learning and external funding
introduces a novel dynamic ine ciency that arises because atomistic banks do not internalize
the option value of learning about a rm’s risky technology. In our setup, this is because
rms and banks cannot write contracts that are contingent on productivity realizations in
future periods. This leads banks to lend too little.
The two ine ciencies suggest welfare gains from subsidizing bank lending. Interestingly,
by mitigating the dynamic ine ciency, subsidized bank lending generates new information-9ne-



Figure 4:



private loan size exceeds the xed cost precisely to the right of the lending threshold (vertical
dotted line), where > +V



Table 1: Calibrated parameters

Parameter A A=A

Endog. uncertainty 0.99 2.000 5.000 0.913 1.041 0.563 0.944 0.073 0.139 0.350 0.117
Exog. uncertainty  0.99 2.000 5.000 0.907 0.983 0.563 0.944 0.073 0.121 0.350 1.000

our choice of using two proxies for the fraction of rms that lack su cient funding. First,



Figure 5: General equilibrium response to an AR(1) nancial shock

Note.



-N 10

Figure 6: The distribution of uncertainty 5 periods into the impulse response and at the steady state

Note. Solid black line: level of uncertainty corresponding to s



Credit spreads, default rates, and dispersion. Rising uncertainty also helps explain a



In Appendix A, we use these forecasters’ beliefs to compare the model’s predictions with
micro data from a survey of professional forecasters. From (20), the degree of \disagreement™

among forecasters is given by
1
de ["‘ij;t] = 1—

2
it +

(21)

Thus, according to our model, there should be a tight empirical link between disagreement
and the degree to which a rm is nancially constrained. As shown in Appendix A, this is
indeed the case.

5 Extensions

We next present three extensions that demonstrate how our mechanism operates (i) in the
presence of investment and capital, (ii) in a New Keynesian version of our model, and (iii)
when some rms do not rely on external funds to nance their projects.

5.1 Introducing Capital

Our rst extension introduces capital to the baseline model in Section 2 and compares it to a
standard real business cycle (RBC) model. To do so, we modify the production function of
rm i to a Cobb-Douglas aggregate of capital and labor

1
Yi;t = Ai;t ' Ki;tl—il;t :

where capital K;. is rented at the competitive rate 1 + rf¢ > 0 from households. The
representative household is now allowed to not only save in bonds By (which are still in zero
net supply) but also in capital K;. The date-t budget constraint now reads

Ct+Bt+1+Kt+l :th_t+(1+rt l)Bt+ 1+r:< Kt+Tt:

As usual, capital K, is determined one period in advance. Market clearing,

determines the rental rate 1+ r{< 20)



lending threshold ¢ is now given by

Yt

1
A+ Cowg X0 T O

t=log (1+ o log

We next show that the model with capital is equivalent to an RBC model, with an
endogenous process for TFP corresponding to the e ciency wedge introduced in (17) and an
endogenous process for a resource wedge as de ned below.

Proposition 3. Conditional on processes of the e ciency wedge fAg, de ned in (17), and
a resource wedge fGg, de ned by
Z 1

Gt it dl, (22)
0

the equilibrium behavior of fCy; K¢;Ltg (and therefore also of other aggregates, such as
Ye; We; i) is described by a standard RBC model,

C,'=E (1 D AwiKpg'leg +1 Ceii (23)
L =(Q Ha )G AK, L, (24)



Figure 7: General equilibrium response in the model with capital



Figure 8: Response to nancial shock with nominal rigidities and hand-to-mouth agents

Note. All parameters as in Section 4.1. Share of hand-to-mouth agents of 50%.

an assumption we make here as well.?* Our results here would qualitatively be very similar
with an active Taylor rule, though quantitatively would depend on the exibility of nominal

wages.
Aggregate consumption in this model is then characterized by

Cy = CP®e + wl =2

(Cr=)



Figure 9: General equilibrium response in the model with both bank- nanced and equity- nanced rms

economy with nominal rigidities. By throttling new loans to rms, the nancial shock directly
reduces spending of rms and thus aggregate demand and aggregate income. This is then
ampli ed via the Keynesian cross as hand-to-mouth households cut back on their spending
in response to lower incomes. The nancial shock and the associated decline in aggregate
demand persistently tighten the lending threshold ¢ in (19). Like before, in the endogenous
uncertainty model this leads to a persistent decline in lending activity.

Interestingly, while we feed in a shock to the supply side of the economy, the shock ends
up lowering aggregate demand su ciently to cause a demand-driven recession, with a positive
labor wedge, similar to the logic in Guerrieri et al. (2022) and the evidence in Huber (2018).

5.3 Introducing Equity-Financed Firms

So far, all rms equally relied on bank credit in order to fund their projects, exposing their
ability to operate to the beliefs of the nancial market. We now explore the case in which
some rms are equity- nanced and do not need bank credit to fund the xed cost ;.22 This
allows them to always operate their preferred technology. To make it even starker, we assume
away any information frictions for those rms as well. That is, equity- nanced rms are able
to observe A;. at the end of each period, irrespective of the technology that was actually used
in production. We explore the robustness of our mechanism to this extension by assuming
that one half of all rms are equity- nanced and thus never face any nancial constraints.
Figure 9 shows the aggregate responses to a nancial shock with the same magnitude as
our baseline in Section 4. For comparison, we include the responses from the baseline model.
Not surprisingly, the impact response is scaled down by the fraction of rms a ected by the
shock. Reassuringly, however, the responses are similarly persistent | if not more ] compared

22Through other mechanisms, equity nancing may also subject rms to the beliefs of the nancial market,
giving rise to a similar mechanism as the one in this paper. We explored this in a previous working paper
version (Straub and Ulbricht, 2018).

28



with the baseline responses. Inasmuch as we do not have a strong prior about the magnitude
of the exogenous shock, the two models hence behave very similarly in terms of measurable
variables.

6 Quantitative Exploration

We next explore the quantitative relevance of endogenous uncertainty for businesses cycles.
To do so, we build on the version of our model with capital (Section 5.1) and further extend it
to allow for three additional standard shocks. We allow for shocks to total factor productivity
(TFP) Z4, )

Yi;t = Zt 'A\|t7l Ki;tl—il;t ;

shocks to the labor wedge -, modifying the rst order condition for labor supply from (24)
to
Lb=1 @ HA HCGIAKL ;

and shocks to the investment wedge |, modifying the Euler equation from (23) to

L

1
1+t1



Table 2: Priors and posteriors







Figure 10: Contribution of endogenous uncertainty to the Great Financial Crisis

Note. This plot illustrates the role of endogenous uncertainty for the behavior of output and hours around the Great Financial
Crisis. The black line is the data, which the endogenous uncertainty model matches exactly. The red line simulates the exogenous
uncertainty model, subject to the same shock realizations as the endogenous uncertainty model. Both plots are normalized to 0
in 2008Q1.

with 1, i.i.d., normal, with zero mean and variance 3. To maximize the potential for
aggregate uncertainty uctuations, we assume that agents do not infer any information about
Z, from the cross-sectional distributions of prices, outputs, etc.

To characterize the uncertainty dynamics in this economy, de ne the aggregate input
bundle in the economy as



Figure 11: Endogenous uncertainty at the rm level vs. the aggregate level

Var[Zj 1] converged to a constant. Now suppose the economy is hit by the same nancial
shock as in Section 4, whereas aggregate productivity and the noise shock remain at their
steady state values (Zi+s = Z and '« =0 for all s 0). It then follows that agents’ mean
expectations remain unperturbed (i.e., E[Z¢+sjlt+s] = Z for all s), and aggregate uncertainty

evolves as follows , 2
zZ — Z t1 2.
= + 2 (28)
t _ Z
1+(=X¢ 1) 2 £,

To maximize the potential impact of the aggregate uncertainty channel, we chose pa-
rameters z, z and , so as to maximize the percentage increase in tz at the peak of the
impulse response. Clearly, the response is maximized for > = 1. Moreover, because any
proportionate scaling of - and , also scales # (and thus leaves the percentage response
relative to steady state unchanged), it is su cient to set the relative standard deviation

-z



0 10 20 30 40
Figure 12: Peak increase in uncertainty by size of the nancial shock in the aggregate uncertainty model

parameterization. It can be seen that for any magnitude of the shock, the peak increase
in uncertainty is proportionately smaller than the corresponding loss in output. This is
markedly di erent in our model with endogenous rm-level uncertainty. There, no matter
how small the nancial shock, it always results in some rms losing risky funding at the
margin, starting the adverse credit{uncertainty spiral for those rms.

8 Concluding Remarks
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Endogenous Uncertainty and Credit Crunches
I Online Appendix |

Ludwig Straub Robert Ulbricht

A Evidence From Survey Data

At the core of our model is a two-way interaction between uncertainty and nancial constraints,
causing both variables to co-move. In this appendix section, we explore the extent to which
this co-movement can be seen empirically, both in the micro-data and at the aggregate.

A.1 Data

Our dataset is a yearly panel of public US rms.

Proxies for uncertainty. Our proxy for uncertainty is based on forecasts about earnings



Proxies for nancial constraints. For the purpose of measuring nancial constraints,
we follow the corporate nance literature and combine various balance sheet data to proxy
for rms’ access to funds. Our main measure is the \KZ-index" developed by Kaplan and

Zingales (1997) and Lamont, Polk and Saa-Requejo (2001). Speci cally, the \kz-score™ of
rm i at date t is given by

cash ow;.

kzix = 1:001909
ki;t 1

+0:2826389  QixQ



Table A.l: Financial constraints and uncertainty

Data
) 2 3 4
Financially constrained .081 .079 .079 .031
(.012) (.012) (.012) (.008)
Observations 47 342 47 342 47 335 46 141
Adj. R-sq. .010 .023 .078 .709
Year month FE no yes yes yes
Sector FE (4 digit) no no yes no
Firm FE no no no yes

Note. Standard errors clustered at the rm-level are in parenthesis.

A.2 Financial Constraints and Uncertainty

Cross-sectional evidence. To explore whether the predicted link between nancial con-

straints and uncertainty is present in the data, we run a simple OLS regression of forecast-error
dispersion % on the KZ-based indicator. Table A.I reports the estimated coe cients, control-
ling for di erent combinations of xed e ects. The estimated e ect is roughly constant over



Figure A.l: Average forecast error dispersion (a proxy for uncertainty) of constrained and unconstrained
rms.

Note. This gure shows the average forecast error dispersion among nancially constrained and among nancially unconstrained
rms. Financially constrained rms are those whose current Kaplan and Zingales (1997) index lies in the top 5% of the

distribution. Financially unconstrained rms are all other rms.

Table A.1l: Alternative proxies for nancial stress

) ) (3) (4)
Panel a: Financial conditions measured by dividends
E ect of constraint  .030 .026 .018 -.003
(.002) (.002) (.003) (.002)
Observations 58 737 58 737 58 735 57 215
Adj. R-sq. 0.009 0.022 0.072 0.700

Panel b: Financial conditions measured by leverage
E ect of constraint  .016 .014 .015 .003
(.005) (.005) (.004) (.0072)



second an indicator for whether the debt to capital ratio (which is a monotone function of
leverage) is in the top 5% in a given year (Panel b).

The results are qualitatively similar to the ones in Table A.l. Quantitatively, the mag-
nitudes in Table A.lIl are somewhat smaller compared to those in Table A.l. This is not
surprising given that one may think of the KZ indicator as a (more or less) optimized indicator
which already includes dividend payouts and leverage in its composition; and thus dividends
and leverage are both relatively more noisy measures of nancial constraints and therefore
subject to greater attenuation bias.

B Mathematical Appendix

B.1 Proof of Proposition 1

Firm i at date t obtains a loan operating the risky technology if there exists an interest rate
Fit ¢ such that

it log (1+riy) +|09ﬁYt:Wt ! log ( 1)1 1+
P_

= A.l
it 1+riy (A1)

De ne x i:—rtt 2 (0;1]. Equation (A.1) is equivalent to there existing an x 2 (0; 1] such
that

og (' = ' i logx

i log 1+ ) +log Yew, !

Observe that only the right hand side of this equation depends on X, and that it approaches
in nity as x ¥ 1. Thus, the condition for a rm to be nanced can be written as

1

e log L+ ¢)  +log Ye=w, log (1) V(o)

with n
\Y ( i ) min 1 (X) i log x
It x2(0:1] It g

(0]

This proves Proposition 1.

B.2 Properties of V( )

We prove a few properties of V( ) as well, which are stated in the text.
e V(0) = minyp.y F logxg = 0.
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e There is a unique minimizer in the de nition of V( ). To see this, note that the FOC

reads
1 P—

BN
¢ ) X

where () and () are the pdf and cdf of the standard normal distribution. De ning
z 1(x) 2 R, this can be rewritten as

@ = @ (A2)

We claim that this is satis ed for a unique z 2 R. To see why, consider the derivatives
of both sides

{



where A; = F; WYtl is an increasing function, and by (16), w; = (1 HA;. Combining
t
these equations, we nd a system of two equations and two unknowns, A; and Yy,

i} Z
1 Y, ¥ 1 i
—At = )A—\t Yt it di (A3)
t 0 !
Y
A =F ! . (A.4)
(1 DAY

First, we observe that there always exists a solution to this system of equations. The reason
is that (A.4) implies an increasing relationship between A; and Y, which remains positive
and bounded for Y, 1



or

logA V(



Since K is proportional to A, this implies that

Ai;t
1
t

Kit =

Kt

where A; is de ned in (17). Similarly,

A..
"tl Ly
t

Lix =

Using (A.5), (A.6) and (A.7) aggregate output is then given by

Z, . .
Ye = Y, di = AK, L}
0
with y v
K= (1 1y PistYice _ 1 n't — ALK
€= @ D= D= @ HAK
and similarly,

we=(1 )@ HhAK, L, :

The Euler equation from households is standard, and given by

1 _ K 1
Co'=E  1+rg, Ciri

1Ltl

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

Substituting in (A.9) yields (23). The optimality condition for labor is standard and given by

Ly =C, ‘wg

Substituting in (A.10) gives (24). Finally, the resource constraint (25) follows from (A.8).

C Solving the Model



e aggregate output Y
e e ciency wedge A¢
» total operating costs G¢
We compute these objects by iterating over the distribution of rms in belief space,

g¢( ; ;d) where d 2 f0;1g is an indicator for whether a rm is in default or not. Each
period goes through the following stages:

e We start with the previous end-of-period distribution gt(o) Ot 1.

* \We move a random fraction of defaulted rms back into no-default,

0°C: 10 =6"C; 0+ g7 31
o’ 1D =0C: 5D g7(: D)

e We label by ¢ the uncertainty associated with not having received a signal for k
periods,

* We evolve beliefs to be over log A;.; instead of log At 1,

z
02(; wnd)=(@ )






e Aggregating, we nd aggregate output from
Z _ . ) Z
YEE = () e a0d + T 1 g g0d
the e ciency wedge from
z z
A= eaq(; 00d +A 1 g( ; 00)d

and total operating cost G; from
Z Z
Gt = ge( ;5 0s0)d +7 1 ge( 5 0,0)d

We compute the Jacobian of this block as in the \forward iteration™ step in Auclert
et al. (2021).

2. Value added block [simple block]: The value added block maps the aggregate sequences
for output Yy, real marginal input cost mcy, capital Ky, the e ciency wedge A, aggregate
TFP Z;, and the investment wedge | into

1

E
* labor demand L{ = %%
t 1

e real wage w, = (1 ) Z”:th—{,
= return on capital Ry = M Y
ZtAt Kt 11253.5561.7TJ/F1031.7TJ/F1031.7TJ/F1031.7TJ/F1038t



Figure A.ll: Response to an aggregate productivity shock

« the Euler condition: euler; = 1 + ¢4 1_0(;:1

= aggregate output condition: output mkt, Yy Y/

The three unknowns of this model are real marginal input cost mc, capital K¢, and aggregate
demand Y. The three targets are labor mkt,, eulery, and output mkt,. The four shocks are

the nancial shock ¢ TFP Z; the investment wedge |'; and the labor wedge .

D Additional Results

D.1 Aggregate Productivity Shocks

Our focus in this paper is on shocks to the nancial sector. One may wonder, however,
whether our model with its nancial and information frictions also fundamentally alters the
response to aggregate productivity shocks. To do so, suppose production is subject to a
common, fully known, aggregate productivity shock Zy,

1
Yi;t - Zt Ai;tl I—i;t:

Figure A.ll shows that the endogenous and exogenous uncertainty models behave nearly
identically in response to the aggregate productivity shock.”® This is because an aggregate
productivity shock does not shift ¢ nearly as much as the nancial shock, as the response of
average uncertainty in Figure A.ll shows.

D.2 Robustness to the Fraction of Financially Constrained Firms

In our calibration in Section 4.1, we worked with a parameterization that targeted a steady
state share of 25% of constrained rms that do not have access to funding for the risky

A3




Table A.ll1l: Parameters for robustness exercise




Figure A.1V: Comparing di erent ways of de ning the exogenous uncertainty benchmark

Note. Panels compare di erent ways of de ning the exogenous uncertainty benchmark.

Table A.1V: Calibrated parameters of alternative models

Exog. uncertainty model

A

A=A

Baseline 0.99 2.000
Same parameters 0.99 2.000
Same new constrained 0.99 2.000

5.000 0.907 0.983
5.000 0.915 0.996
5.000 0.899 0.978

0.563
0.563
0.563

0.944 0.073 0.121 0.350 1.000
0.944 0.073 0.133 0.350 1.000
0.944 0.073 0.112 0.350 1.000

D.4 Role of endogenous

uncertainty for output and hours

Figure A.V illustrates the role of endogenous uncertainty for the historical paths of output
and hours. To construct it, we start from the estimated endogenous uncertainty model,
which is designed to match the data (dotted line). We plot the contribution of nancial
shocks (black solid), where endogenous uncertainty matters most. The exogenous uncertainty
benchmark (red dashed) is obtained by feeding the exact pattern of historical nancial shocks
estimated for the endogenous uncertainty model into the model with exogenous uncertainty.

Al5



Figure A.V: Role of endogenous uncertainty for contribution of nancial shocks to the business cycle

y

Note. This plot shows the estimated historical contribution of nancial shocks to output and hours in the endogenous uncertainty
model (black). The red, dashed line is the historical path of output and hours in the exogenous uncertainty benchmark, when it

is subject to the same set of historical shocks as the endogenous uncertainty model. Dotted is the data, which di ers from the
black line due to the presence of other shocks.
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