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Abstract

In 56 developing and developed countries, blood component donations by volun-
teer non-remunerated donors can only meet less than 50% of the demand. In these
countries, blood banks rely on replacement donor programs that provide blood to
patients in return for donations made by their relatives or friends. These pro-
grams appear to be disorganized, non-transparent, and ine�cient. We introduce
the design of replacement donor programs and blood allocation schemes as a new
application of market design. We introduce optimal blood allocation mechanisms
that accommodate fairness, e�ciency, and other allocation objectives, together
with endogenous exchange rates between received and donated blood units beyond
the classical one-for-one exchange. Additionally, the mechanisms provide correct
incentives for the patients to bring forward as many replacement donors as possi-
ble. This framework and the mechanism class also apply to general applications of
multi-unit exchange of indivisible goods with compatibility-based preferences be-
yond blood allocation with di�erent information problems.
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1 Introduction
Transfusions are commonly used to treat various medical conditions to replace lost

blood or add inadequate blood components. Replacement red blood cells and other

blood components such as platelets, plasma, and clotting factors are essential for patients

going through certain procedures such as surgery, chemotherapy, and child birth and for

patients with trauma and blood diseases.1 In the US, according to Pfuntner et al. (2013),

blood transfusion was the most common procedure performed during hospitalizations in

2011. Even though transfusion is an essential procedure in health care, many patients

around the world do not have access to safe blood due to signi�cant shortages.

Around the world, the collection and distribution of blood is organized through blood

banks where donated blood is processed and stored. Unlike most solid human organs and

tissues, blood replenishes after donation and most blood products can be stored for a

period of time. Thus, a healthy donor can donate whole blood regularly once in every two

months and some components, such as platelets and plasma, more frequently. Di�erent

compatibility requirements apply for each blood component (see Section 2 for medical

and institutional details of blood component transfusion including various compatibility

requirements).

The most adequate and reliable supply of blood is throughvolunteer non-remunerated

donors (VNRDs), who mostly donate blood, often repeatedly, through blood drives or

other campaigns.2 These donors provide the safest supply of blood, since the prevalence

of blood-borne infections is lowest among this group of donors.3 According to the World

Health Organization (WHO), 79 countries (38 high-income, 33 middle-income, and 8

low-income) collect more than 90% of their blood supply from VNRDs (WHO, 2020).

The World Health Assembly resolution WHA63.12 (Sixty-third World Health Assembly,

2010) urges all member states to develop national blood systems based on VNRDs and

to work toward the goal of self-su�ciency. Despite these warnings, donations by VNRDs

remain insu�cient to meet the demand for blood and its components in many regions of

the world.



Although it seems relatively costless to donate blood, there are severe blood shortages

in many developing countries, as well as seasonal shortages in developed countries (Gilcher

and McCombs, 2005).4 Cultural and religious factors create frictions that deter VNRDs,

especially in some developing countries. Furthermore, some blood components, such as

platelets, have short shelf life, are in high demand, and are more di�cult to collect than

the others. Thus, shortages of such components occur even in the developed world.

In 56 countries worldwide (9 high-income, 37 middle-income, and 10 low-income),

more than 50% of the blood supply is met byreplacement donorsand, in some cases,

through paid donors (WHO, 2020). As an e�ective method to boost blood component re-

serves, blood banks in many places|including highly populated countries such as India,

China, and Brazil|employ o�cial or uno�cial replacement donor programs. A replace-

ment donor program requires each patient to nominate a number of willing donors, who

are typically family members or close friends, to donate in order for the patient to receive

transfusion.5

Notwithstanding the important role they play in addressing blood shortages, existing

replacement donor programs su�er from two major shortcomings.

The �rst shortcoming is the loss of welfare due to the lack of optimized inventory

management based on donor screening and the needs of the blood bank. Although

inventory management is often considered among the most important goals for a blood

bank, as far as we know, no explicit optimization is pursued in current replacement donor

programs to achieve certain policy objectives. In the face of chronic supply shortages, one

such natural objective can be to maximize the allocated blood volume using the correct

set of replacement donors.

The second shortcoming is that replacement donor programs generally operate on

4There are often shortages of type O red blood cells in the US in the early winter and midsummer
months. Outside of seasonal factors, blood shortages can often frequently occur during catastrophic
events such as earthquakes or pandemics. For example, during the recent COVID-19 pandemic, blood
components have had shortages in the US (American Red Cross, 2020a).

5Within the medical community, there is an ongoing debate about the stance of the WHO regarding
VNRDs being the safest blood supply. There has been considerable evidence suggesting that the blood
collected through replacement donors is as safe as VNRDs. It is also argued that the motivations of
the two types of donations are similarly altruistic, and the distinction between them from an ethical
perspective is not clear cut. Allain and Sibinga (2016) provide an excellent survey of these views,
empirical evidence, and references. In addition, there are signi�cant economic and cultural reasons for
the predominance of decentralized and often hospital-based replacement systems in many developing
countries. Such a system is much less costly (Bates et al., 2007), favors intra-group solidarity, and is
culturally more consistent with the presence of strong family or community bonds (Haddad et al., 2018;
Kyeyune-Byabazaire and Hume, 2019).
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�xed exchange rates between units (of blood) received by the patient and units supplied

by the patient's donors, which creates issues of e�ciency, fairness, and ethics. Certain

patients may not be able to recruit the required number of donors that they are obliged to

provide, making it di�cult to receive blood. The rules of replacement donor programs are

sometimes bent arbitrarily in favor of such patients, or such patients pay third parties

to assume the role of their replacement donors creating black markets. Additionally,

around the world, replacement donor programs appear to be highly non-transparent in

their blood allocation operations. It is di�cult to �nd existing guidelines that govern

these processes (see Section 2 for institutional details of how real-life replacement donor

programs function). Even in the absence of these problems, a �xed exchange rate regime

limits the scope of admissible exchanges and allocations.

In this paper, we introduce blood allocation with VNRDs and replacement donors



spondence. We view the design of feasible schedule correspondences as an important

policy variable and novelty in the paper.

Then we propose and study a general class ofoptimal mechanisms. Each optimal

mechanism is represented by the maximization of anadditively responsiveaggregate

preference relation over schedule pro�les of the patients, subject to feasibility constraints

designated by the feasible schedule correspondence of each patient, as well as market

clearing and blood-type compatibility conditions (see Section 4). This class includes

practical mechanisms that ful�ll the blood bank's various allocation and inventory man-

agement objectives, such assequential targeting mechanisms(that maximize the amount

of blood received or minimize the amount of blood supplied by each target patient group

in a sequential manner) andweighted maximal mechanisms(that maximize the di�er-

ence between a weighted sum of the amounts received by the patients and a weighted

sum of the amounts supplied). Optimal mechanisms also nest all previously studied

mechanisms for the multi-unit exchange of indivisible goods with compatibility-based

monotonic preferences as special cases (see Section 6).

The optimal mechanisms together with the feasible schedule correspondences over-

come the two shortcomings of current replacement donor programs outlined above.

First, they address the lack of optimization based on donor screening. In particular,

the optimal mechanisms are e�cient for patients under basic alignment conditions of the

aggregate preference relation over schedule pro�les with patients' preferences (Remark

1). They are alsodonor monotonic, i.e., providing a larger set of donors does not reduce

the amount of blood the patient receives, under three natural restrictions on the feasible

schedule correspondences (Theorem 2): every feasible schedule set satis�es a discrete

convexity notion, L(attice)-convexity; if a patient receives an extra unit of blood, then it

is also feasible that an additional donor of hers can be asked to donate, if needed; and the

feasible schedule set becomes more favorable for the patient as her donor set expands.

Among these conditions, L-convexity plays an important role, which also guarantees that

the outcome of a weighted maximal mechanism can be found in polynomial time (see

Appendix C.2 in Supplemental Material). Achieving donor monotonicity is particularly

important in this context as it helps align patients' individual incentives with the blood

bank's objective of increasing blood transfusion. We show that optimal mechanisms

satisfy a stronger incentive compatibility notion when the last restriction on the feasible

schedule correspondences is strengthened (Theorem 3).6

6We also provide comparative static analysis for changes in feasible schedule correspondences (The-
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Second, the innovation of feasible schedule correspondences allows for various ex-

change rates between units received and supplied, while optimal mechanisms determine

endogenously these exchange rates. This property helps rectify the shortcoming caused

by a �xed exchange rate in current programs, as these feasible schedule correspondences

can be tailored fairly for patients who can intrinsically recruit fewer donors, or for dif-

ferent medical conditions, which help prevent black markets. As a result, our approach

provides a framework to assess and improve the e�ectiveness of the existing replacement

donor programs, and makes it possible to o�er rigor and transparency to their organiza-

tion. Toward this goal, we provide concrete policy designs and implementation proposals

(see Section 5). We also conduct simulations to show the possible gains from our de-

sign. Using the blood-type distribution in India and under a set of realistic parameters,

a sequential targeting mechanism under exible exchange rates leads to 19%-28% more

transfusions than the same mechanism under the one-for-one exchange rate, which in

turn leads to 164% to 3% more transfusions than an emulation of current replacement

donor practices.

Unlike the living-donor organ exchanges that have attracted much attention in the last

two decades in both the market design literature and practice, blood allocation involves

multi-unit demand and supply.7 Moreover, many other factors make this market design

problem theoretically and practically di�erent from the analysis and functioning of solid

organ exchanges. These include di�erences in the compatibility requirements for di�erent

blood components, the possibility of endogenous and non-unit exchange rates between

blood received and supplied, the non-simultaneity between donation and transfusion, and

the possibility to store blood components.

Our model and theoretical results are independent of the particular background of

blood allocation and can readily be applied to other contexts with a subset of similar fea-

tures within the framework of multi-unit exchange of indivisible goods with compatibility-

based monotonic preferences in units consumed. Although compatibility is veri�able in

blood allocation, there can be other contexts where this is private information for each

agent. Some such applications studied in the literature include shift exchanges among

the workers in a company (Manjunath and Westkamp, 2021) and time banks and fa-

vor exchanges (Andersson et al., 2021). We show that optimal mechanisms are weakly

orem 4).
7Notable exceptions to unit-demand organ exchanges are living dual-donor lobar lung transplantation,



strategy-proof under our baseline assumptions: no agent receives more compatible units

by misreporting her compatibility relation and/or under-reporting her endowment set.8

Under more stringent conditions, we show that they are fully strategy-proof. Thus, our

mechanisms and incentive results substantially generalize and subsume previous ones

under compatibility-based preferences. Moreover, as far as we are aware, all previous

exchange mechanisms in the literature use the exogenous one-for-one exchange rate. As

an important theoretical contribution, we overcome this limitation and introduce endoge-

nous pricing of units while maintaining the good incentive properties of the mechanisms

(see Section 6 for more on this and other related literature).

2 Background

2.1 Main Blood Components and Compatibility
There are di�erent transfusion protocols for di�erent blood components, and the

medical practices also vary across di�erent regions of the world. We mainly focus on the

three most-transfused blood components|red blood cells, platelets, and plasma|as well

as whole blood, and provide a brief account starting with a general rule of thumb for

compatibility requirements.

Blood-type compatibility plays an important role for the feasibility of transfusion.

There are more than 300 human blood groups. Two of them are the most important in

clinical practices. The �rst one, the ABO blood group system, is the most commonly

known. A person's ABO blood type is determined by the presence ofA or B antigens

in her blood cells: her type may beO (if she has neither antigen),A (has only the A

antigen), B (has only the B antigen), or AB (has both antigens). Each person has pre-

formed antibodies in her plasma against every non-existent antigen. Antibodies against

an antigen attack blood cells that carry this antigen, which can cause potentially fatal

hemolysis.

Therefore, any transfusion including a signi�cant amount of donor cells, by rule of

thumb, should respectABO-cellular compatibility: O blood-type cells can be donated to

all, A blood-type cells can be donated toA and AB blood-type patients, B blood-type

cells can be donated toB and AB blood-type patients, andAB blood-type cells can only

be donated toAB blood-type patients.

8We extend our analysis to this general domain in Appendix B in Supplemental Material and consider
the incentives to truthfully reveal compatibility relation as well as endowment. The proof of our main
result, Theorem 2, generally applies to prove this new result and only certain points need to be modi�ed
as noted in this appendix.
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On the other hand, any transfusion including a signi�cant amount of donor plasma,

which carries the donor's pre-formed antibodies, by rule of thumb, should respectABO-

plasma compatibility: AB blood-type plasma can be donated to all as it does not contain

any antibodies,A blood-type plasma can be donated toA and O blood-type patients,B

blood-type plasma can be donated toB and O blood-type patients, andO blood-type

plasma can only be donated toO blood-type patients as it contains antibodies against

both antigens.

The second crucial blood group system is Rh. The most clinically important Rh

antigen is D. Its existence and non-existence correspond to Rh D+ type and Rh D�

type respectively. Antibodies to the Rh D antigen can only develop on an Rh D� person

after being exposed to Rh D+ red blood cells. Hence, the compatibility requirement is

to avoid the transfusion of Rh D+ red blood cells to an Rh D� patient, due to the risk

of hemolytic reactions.

Most blood components are packed with others in solutions. Thus, depending on the

amount of these components, di�erent practices are followed for the compatibility of the

pack with the patient.

Next, we turn our focus to speci�c blood components.

Red Blood Cells : Red blood cells carry oxygen from the lungs to all parts of

the body and are the most commonly transfused blood components. Red blood cell

transfusion|the de-facto modern day replacement for the older whole blood transfusion

therapy|is mostly used for patients with anemia due to cancer, blood diseases, and other

causes, followed by surgical patients. Whole blood is still transfused in some low-income

countries. For other countries, this is only occasionally performed in emergencies for

patients with massive blood loss due to trauma, surgeries, etc. A person donates one

unit (about a pint) of whole blood each time and she has to wait at least eight weeks

between donations. Each unit of red blood cells is prepared from one unit of donated

whole blood by removing plasma and adding preservative solutions, and can be stored

for about 42 days.

ABO-identical and Rh D-compatible transfusion is generally practiced for whole blood

transfusion.9 For red blood cells, ABO-cellular compatible and Rh D-compatible trans-

fusion is all that is needed in theory. However, as red blood cell packs usually carry some

amount of donor plasma, ABO-identical (and Rh D-compatible) transfusion is often re-

9An exception is that type O Rh D� blood is often transfused in emergencies to patients with other
or unknown blood types. For this reason it is also dubbed as theglobal-donor blood type.
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quired.

Eight blood types are relevant for red blood cell or whole blood transfusion. However,

in some populations, such as those in Asia, Rh D� is so rare that there are e�ectively

only four blood types.10

Platelets : These are tiny cells in the blood that form clots and stop bleeding. Platelet

transfusions are mostly given to prevent or treat bleeding in patients with thrombocytope-

nia or abnormal platelet function, such as those undergoing chemotherapy or receiving

a bone marrow transplant. McCullough (2010) states that the use of platelets has in-

creased more than other blood components in the last 15 years. According to Red Cross

of America, every 15 seconds someone needs platelets (American Red Cross, 2020b).

However, due to their storage requirement at room temperature, platelets have a much

shorter shelf life than most other blood components: in most countries they can only

be stored between four and seven days (Cid et al., 2013). As a result, platelets are in

frequent shortages even in developed countries.

One unit of platelets can be prepared from 4-6 units of pooled whole blood, or obtained

from a single donation through the technique ofapheresis, which only takes platelets out

of the donor's blood, leaving the other components in the blood stream. The whole

process takes approximately three hours and a person can donate platelets in this way

once a week, up to 24 times a year.11 In addition to the e�ciency in the production pro-

cess, apheresis platelets are also safer to the patients due to the minimal donor exposure.

Hence, it has become an increasingly common practice to give apheresis platelets, instead

of whole-blood-derived platelets. In 2017, only 4:2% of the total transfused platelet units

in the US were derived from whole blood (Jones et al., 2020).12

For platelets, the compatibility practices vary signi�cantly among di�erent institu-

tions and countries. As platelets (weakly) express the ABO antigens and they are sus-



Finally, as the Rh D antigen is not present on platelets, Rh D compatibility is usually

not required (for example, see Cid et al., 2013).

Plasma: It is the non-cellular, protein- and antibody-rich liquid component of blood.

The plasma used in everyday transfusion is usuallyfresh frozen plasma. Plasma trans-

fusion is often utilized by patients with liver failure, heart surgery, severe infections, and

serious burns. One unit of fresh frozen plasma can be prepared from one unit of whole

blood after removing the blood cells. Alternatively, a person can donate up to three

units through apheresis, which keeps other blood components in her blood stream and

only extracts plasma. Fresh frozen plasma has the longest shelf life among the three main

blood components: it can be stored for about a year. Its transfusion follows ABO-plasma

compatibility, without regard to Rh D compatibility (as Rh D antibodies only form after

exposure to the Rh D antigen and are not pre-formed).

Convalescent plasma, the antibody-rich plasma of a patient recovering from an infec-

tious disease with no other known cure, such as Ebola and most recently COVID-19, is

commonly used to treat patients or to produce drugs against the disease. It can also be

considered as a type of fresh frozen plasma.

In addition to plasma used for transfusion, plasma derivatives (such as albumin, co-

agulation factors, and immunoglobulins) manufactured from \source plasma" in fraction-

ation centers are used in the treatment of various conditions. Unlike the blood used for

transfusion, source plasma is commonly collected from paid donors in many countries.13

2.2 Blood Demand of a Patient
The amount of a blood component needed to treat each medical condition is idiosyn-

cratic. For example, Collins et al. (2015) report that, at a tertiary referral center in the

US, the average amount of red blood cell units used per surgery is close to 3.5 units and

this amount has a high variance due to various patient conditions.

Besides the idiosyncratic demand, there is usually a range of units where each amount

in the range can be transfused to a given patient. However, receiving more units is

generally better under various outcome or preference metrics. We give three general

examples of patient demand that have this common thread.





blood needs to be tested and processed �rst), the blood bank is used as an intermediary.

Blood banks work with hospitals and blood centers. Hospitals relay the needs of

patients to the blood banks, while the blood banks and blood centers collect donations

from VNRDs and replacement donors. Hospitals are often required to maintain a small

inventory of their own (for example, see Delhi State Health Mission, 2016).

Although replacement donor programs are very common and o�cially acknowledged

in many countries, maybe surprisingly, it is di�cult to �nd their exact institutional

details. The most common practice in current replacement donor programs worldwide

is that the blood bank announces, either o�cially or uno�cially, a preset exchange rate

between the units of blood received and supplied, often irrespective of the blood type

sought or donated. Blood banks provide blood to patients exclusively based on these

rates. Among these, the one-for-one exchange rate, i.e., one unit replacement per unit

received, is most common around the world.

We also give some examples of other policies practiced. Although China banned the

replacement donor programs in 2018, they are still used in several cities during shortages,

especially for platelets (She, 2020). Di�erent policies have been in place. In most cities,

including Beijing, the exchange rate is one-for-one. As reported by She (2020), in Xi'an,

during periods of shortages, a patient has the priority of receiving three units of blood for

every unit she has donated before, and she has the priority of receiving one unit for every

unit her replacement donors donate now. According to Chen (2012), in Guangzhou, there

is not necessarily a �xed relation between the amount received and supplied. Moreover,

in some regions there are restrictions on the blood types of replacement donations. As

an extreme case, the blood type of a replacement donor must be identical to that of the

patient in Jiangsu. While such a restriction is relatively rare for whole blood donations,

it is not uncommon for replacement platelet donations throughout the country.

India has the largest o�cial replacement donor programs in the world after Pakistan.

In Delhi, regardless of the amount of blood she needs, the patient is required to bring

forward one replacement donor, unless the intervention needed is an emergency surgery

(Delhi State Health Mission, 2016).

In Cameroon and Congo, the exchange rate has been two replacement units per unit



The exchange rate is �xed at one-for-one; however, it is not as strictly enforced.16

2.4 Institutional Constraints
The feasibility of blood transfusion primarily depends on the blood type compatibility.

Therefore, replacement donor programs operate on the premise of exchange of willing

donors for compatible blood received by the paired patient. This is similar in principle

to organ exchanges with the �rst-order di�erence that there is not yet an optimized

central clearinghouse for replacement donors. There are a number of other important

institutional di�erences. To begin with, the logistical constraints of blood donation are

negligible compared to those in organ transplantations. The blood donation process

takes only a few hours and its e�ects wear o� relatively quickly. On the other hand,

organ transplantations carry risks and require careful planning weeks before and after the

operations. Once extracted, blood components can be stored for a certain period of time,

which can facilitate the designer's choice of optimal timing of assignments. Moreover,

many blood banks and hospitals often operate in coordination, making it possible to

obtain the necessary blood units from neighboring facilities. These lead to the observation

that in blood allocation with replacement donors, the possibility of a donor reneging is

not as much of a concern as in organ exchanges.17

The logistical ease and exibility in blood allocation have led to di�erent and inno-

vative incentivization schemes to promote blood donation. The assignment of voucher

credits has been a popular approach in practice. For example, blood assurance programs

in the US guarantee each VNRD or her tax-code dependents exactly the same amount of

blood donated in the event of a future need.18 Similar programs have also been tradition-

ally implemented in China. Recently, Kominers et al. (2020) proposed a similar incentive

scheme for COVID-19 convalescent plasma donation.19 Replacement donor programs

di�er from these proposals, as we are considering the improvement of existing programs

that usually do not have many voucher or memory features, nor the pay-it-backward



constraints.

3 The Model
We consider the market for a single blood component, which we simply refer to as

blood.20 Let I be a set ofpatients and B be the set ofblood types .21 Each X 2 B

denotes a speci�c blood type used in compatibility requirements. Each patienti 2 I has

type � i 2 B blood and needs amaximum of ni 2 Z++ units of blood. For eachX 2 B,

C(X ) � B , C(X ) 6= ; , is the set of blood types compatible with a typeX patient. Each

patient i also has a (possibly empty) set of willingreplacement donors D i such that

each donord 2 D i can provide one unit of type� d 2 B blood. Let D i be the collection

of all possible donor sets that a patienti 2 I can bring forward. Assume that ifD i 2 D i

and D 0
i � D i , then D 0

i 2 D i . Let � I = ( � i ) i 2 I , � Dset o.0 Td -28(o-1.791J5 3 [(b)-27(e2[o.0 Td 22 Tf )]TJ310(donor368 7.9701 T552 Tf 152 Tf )]TJ31(D)6n)-309(com)1(pati22 Tf )]TJ3141.9or setsI



may be set to zero during severe shortages.

Since each patient demands and (possibly) supplies blood through her replacement

donors, we impose restrictions on the relationship between the amount of blood received

and the amount of blood supplied. Aschedule is a pair of non-negative integers (r; s),

where r denotes the amount of compatible blood received ands denotes the amount of

blood supplied. For every patienti 2 I , her feasible schedule correspondence Si

assigns a non-empty set of schedulesSi (D i



every D i 2 D i ,

Si (D i ) =

( �
(0; 0)

	
if

�
�D i

�
� < 2nin

(r; s) 2 Z2
+ : s = 2r and ni � r � min

�
ni ;

� �
�D i

�
�=2

�	 o
otherwise

:

ˆ Xi'an, China policy: A patient is guaranteed three units for each unit she has

donated before, and the exchange rate is one-for-one beyond this guarantee (She,

2020). Let x i 2 Z+ be the amount of previous donations from the patient.24 Then,

her feasible schedule correspondence is as follows.

If ni � 3x i , then for everyD i 2 D i ,

Si (D i ) =
�

(ni ; 0)
	

:

If ni > 3x i , then for everyD i 2 D i ,

Si (D i ) =
�

(r; s) 2 Z2
+ : s = r � ni and ni � r � minf

�
�D i

�
� + ni ; ni g

	
;

whereni = 3x i .

ˆ Jiangsu, China policy: The standard one-for-one policy is used with the restriction

that the type of the blood supplied must be identical to the type of the patient (Chen,

2012): for everyD i 2 D i , if
�
� f d 2 D i : � d = � i g

�
� < n i , then

Si (D i ) =
�

(0; 0)
	

;

and otherwise,

Si (D i ) =
�

(r; s) 2 Z2
+ : s = r; n i � r � minf ni ;

�
� f d 2 D i : � d = � i g

�
�g

	
:

This is akin to no exchange (autarky) treatment.

A blood allocation problem with replacement donors is denoted asP =

hI; � I ; n; D; � D ; v; n; Si . The inventory vector v, minimum guaranteesn, and feasible

schedule correspondencesS are interrelated and can all be considered as policy levers.25

We �x every component of a problem exceptD.26 Then a problem is simply denoted as

a donor pro�le D.

Given a problemD 2 D , an allocation � consists of non-negative integers� X (i ) for

eachi 2 I and X 2 C(� i ), and � (d) 2 f 0; 1g for eachd 2 [ i 2 I D i such that

24Assume that x i is exogenous to the problem, and the patient has not used the credits received from
the previous donations in a replacement donor program.

25The vector v can be interpreted as the minimum required inventory level to be kept in stock. This
is mostly ensured through a blood exchange program among blood banks, which is commonly practiced
(for example, see AABB, 2020).

26Without loss of generality, we use this notation for brevity, assuming � D is determined onceD is
given. Moreover, in Section 4.3, we discuss the e�ect of changing a patient's feasible schedule correspon-
dence.

16



1. for everyX 2 B,
P

i 2 I :X 2C(� i )
� X (i ) � vX +

P
d2[ i 2 I D i :� d = X � (d),

2. for everyi 2 I ,
�
� (i );

P
d2 D i

� (d)
�

2 S i (D i ), where � (i ) =
P

X 2C(� i )
� X (i ).

In an allocation, the patients only receive blood that is medically compatible with

them. An allocation speci�es the amount of blood of each compatible type that a patient

receives, as well as which of her donors donate. The �rst condition in the de�nition

makes sure that, for each blood type, the allocated blood is not more than the sum of

the existing blood in the blood bank and the collected blood from the patients' donors.



wj (� 0) P j wj (� ) for somej 2 I .

A mechanism is a function f that maps each problemD 2 D to an allocation

f (D) 2 A (D). A mechanismf is e�cient if for every D 2 D , f (D) is e�cient.

We consider the patients' incentives for bringing forward their donors. We introduce

two notions of incentive compatibility, one weak and one strong, where the latter one

coincides with strategy-proofnessiderery



Formally, the mechanism designer has a complete, transitive, and antisymmetricag-

gregate preference relation � over all schedule pro�les in the setW. The asymmetric

component of� is denoted as� . A mechanismf is induced by the aggregate preference

relation � if for every problemD 2 D ,

f (D) 2
�

� 2 A (D) : w(� ) � w(� 0); 8� 0 2 A (D)
	

:

We de�ne two additional conditions on the mechanism designer's preferences. First,

the aggregate preference relation� is aligned with patients' preferences if for every

two schedule pro�lesw and w0 such that wi R i w0
i for all i 2 I , we havew � w0. That is,

if every patient weakly prefersw to w0, then the mechanism designer also weakly prefers

w to w0. Second, we sayw 2 W is a basic schedule pro�le if w 2 f 0; 1g2jI j , i.e., each

element of the vector is either 0 or 1. In a basic schedule pro�le, there is a subset of

patients who each receive a single unit of blood, and a subset of patients who each supply

a single unit. The aggregate preference relation� is (additively) responsive to the



designates for each subsetNk whether a maximization or minimization target will be

achieved.

Maximization, denoted by� (k) = max, means that the total amount of blood received

by the patients in Nk is maximized given that the previous objectives are already satis�ed.

Minimization , denoted by� (k) = min, means that the total amount of blood supplied

by the (donors of) patients in Nk



that i 2 Nk0 and � (k0) = max. That is, if we are going to minimize the blood supplied

by a group of patients, then for each of those patients, we should have maximized the

blood received by some group that includes her at an earlier step.

The �rst condition guarantees that the outcome allocations of the procedure are

welfare equivalent: we use the last 2
�
�I

�
� targets as tie breakers among the patients, in case

the previous targets lead to a multiplicity of allocations in terms of welfare levels. As the

preferences of the patients are lexicographic in receiving more blood and then supplying

less blood, the second condition will ensure the e�ciency of sequential targeting.

A sequential targeting mechanism is de�ned through the above procedure with

respect to a sequence of target setsf Nkg�k
k=1 and a target function � that satisfy the

above two conditions: it chooses an allocation from the outcome set of the procedure,

A �k , executed for each problemD 2 D .

A sequential targeting mechanism is induced by a lexicographic preference relation of

the mechanism designer, such that given any two schedule pro�les, he prefers the one in

which the �rst target set receives more blood; when the amounts of blood received by the

�rst target set are the same, he prefers the one in which the second target set receives

more blood (supplies less blood) if the target is maximization (minimization), and so on.

Theorem 1. Every sequential targeting mechanism is an optimal mechanism.

Di�erent target sets and target functions induce di�erent sequential targeting mecha-

nisms. In practice, since blood transfusion is one of the most common medical procedures,

the patients requesting blood can be highly heterogenous. Target sets can be designed



were examined by Manjunath and Westkamp (2021) and Andersson et al. (2021), respec-

tively, in similar setups. In our context, these two classes of mechanisms are also more

broadly de�ned due to the general speci�cation of feasible schedules.

In a priority mechanism , the patients are processed one at a time using a priority

order. Let jI j = n and list the patients in this order asi 1; i2; : : : ; in : the mechanism

�rst maximizes the welfare of i 1; then, among all allocations that achieve this goal, it

maximizes the welfare ofi 2, and so on. Formally, the target sets are singletons such

that N2k� 1 = N2k = f i kg for every k 2 f 1; : : : ; ng. The target function � is de�ned as

� (2k � 1) = max and � (2k) = min for every k 2 f 1; : : : ; ng.30

In a maximal mechanism with priority tie-breakers , the total amount of blood

received by all the patients is maximized, then the total amount of blood donated by

all replacement donors is minimized. List the patients asi 1; i2; : : : ; in using a priority

tie-breaker. Then among all total welfare maximizing allocations, the welfare ofi 1 is

maximized. Subject to this goal being satis�ed, the welfare ofi 2 is maximized, and

so on. Formally, the �rst two target sets are the set of all patients:N1 = N2 = I .

The remaining target sets are singletons such thatN2k� 1 = N2k = f i k� 1g for every

k 2 f 2; : : : ; n + 1g. The target function � is de�ned as� (2k � 1) = max and � (2k) = min

for every k 2 f 1; : : : ; n + 1g.31

Another interesting subclass of optimal mechanisms areweighted maximal mech-k�



a mechanism that is induced by the aggregate preference relation� , de�ned as follows.

For any two schedule pro�lesw and w0 such that w 6= w0, let w � w0 if O(w) > O (w0), or,

O(w) = O(w0) and there existsk 2 f 1; : : : ; jI jg such that wk P k w0
k and w` I ` w0

` for all

` < k . In addition, let w � w for any schedule pro�lew. It is straightforward to check

that � is complete, transitive, antisymmetric, and responsive. Moreover, to ensure that

it is aligned with the patients' preferences, we assume that for everyi 2 I and D i 2 D i ,

W r (i ) � W s(i )jD i j.32 Then, a weighted maximal mechanism is an optimal mechanism.

Moreover, the class of weighted maximal mechanisms subsumes the sequential targeting

mechanisms (see Appendix C.1 in Supplemental Material).33

4.1 Donor Monotonicity
In this subsection, we explore the incentives faced by patients in bringing forward

their full sets of donors to the blood bank.

For a general pro�le of feasible schedule correspondencesS, the optimal mechanisms

may not be incentive compatible even in the donor monotonicity sense. We will state

regularity conditions on the feasible schedule correspondences that many real-life poli-

cies|such as one-for-one exchange|obey.

We make three assumptions which ensure that the optimal mechanisms are donor

monotonic. They all have natural explanations. The �rst one is about the convexity of

a feasible schedule set for a given set of donors. Generally, a setS � Z2
+ is L-convex

(where L stands for lattice) if for everyx; y 2 S, we have
�

x + y
2

�
;
�

x + y
2

�
2 S:

L-convexity is one of the two most used generalizations of convexity to discrete domains.34

Assumption 1 (L-convexity). The feasible schedule setSi (D i ) is L-convex for every

i 2 I and D i 2 D i .

Figure 1 provides a geometric illustration with three examples of L-convex feasible

schedule sets. Assumption 1 also guarantees that an outcome allocation of a weighted

maximal mechanism can be found in polynomial time, as shown in Appendix C.2 in

Supplemental Material.
32This assumption implies that for any w; w0 2 W with wi R i w0

i for all i 2 I , we haveO(w) � O(w0).
33It is also worth mentioning that given a general optimal mechanism induced by an aggregate pref-

erence relation� , there may not exist a linear utility function that represents � , and thus the class of



Figure 1: Illustration of Assumption 1, L-convexity. The feasible schedule setSi (D i ) is the
integral points of a convex polygon with integral corners and at most six edges of slopes 1, 0,
or 1 . The best scheduleS and the worst scheduleS are also marked in each graph.

A special case that satis�es Assumption 1 is the classical one-for-one exchange rate

between the blood received and supplied, as depicted in Figure 2.

s

rni ni

|Di |

Figure 2: An L-convex feasible schedule set induced by the one-for-one exchange rate policy.
In this example, we assumeni >

�
�>



L-convexity and feasibility of positive price are independent. For example, the two-

for-one exchange rate policy, i.e., two units supplied for each unit received, satis�es

feasibility of positive price but not L-convexity;35 the second feasible schedule set in

Figure 1 violates feasibility of positive price as it has a \at top" at s = 5 < jD i j and

a \at bottom" at s = 1 > 0, while it is L-convex. The other sets in this �gure satisfy

feasibility of positive price, although the third one has a \at top." This is because the

\at top" occurs at the maximum possible supply s = jD i j.

Before presenting the �nal assumption, we introduce a concept regarding the ranking

of schedule sets for the patients, which will also be useful in the comparative static

analysis in Section 4.3. Given a patienti 2 I , a donor set D i 2 D i and two sets

S; S0 � W i , we sayS is weakly more favorable than S0 at D i if the following holds:

ˆ if ( r; s) 2 S0 and r � ni , then there existss0 � s such that (r; s0) 2 S; and

ˆ if ( r; s) 2 S, s � j D i j and (r; s0) 2 S0, then there existss00� s such that (r; s00) 2 S0.

When S and S0 are schedule sets for a patient,S is weakly more favorable thanS0 at

her donor set if (i) for any schedule inS0 such that the amount received is at least the

minimum guarantee, there is a schedule inS where the patient receives the same amount

by supplying weakly less blood, and (ii) for any schedule inS such that the amount

supplied does not exceed the number of donors, whenever there is a schedule inS0 where

she receives the same amount of blood, there is a schedule inS0 where she receives this

amount by supplying weakly more blood.

Using this concept, we make the following assumption regarding the relation between

feasible schedule sets when a patient reports di�erent sets of donors.

Assumption 3 (Non-diminishing favorability in donors). For every patient i 2 I and

donor setsD i ; D 0
i 2 D i such thatD 0

i � D i , Si (D i ) is weakly more favorable thanSi (D 0
i )

at D 0
i .

Favorability manifests itself geometrically asSi (D i ) being an expansion ofSi (D 0
i ) in

the direction of receiving more blood, and/or a downward shift ofSi (D 0
i ).

36 In addition

to Assumptions 1 and 2, the one-for-one exchange rate policy satis�es non-diminishing



number of donors increases. In Figures 3 and 4, we give two examples involving endoge-

nously determined exchange rates to further illustrate the implications of Assumption 3

in conjunction with Assumptions 1 and 2.

Figure 3: An illustration of a feasible schedule correspondenceSi satisfying Assumptions 1, 2,
and 3. This particular policy relies only on the number of donors brought forward jD i j but not
other speci�cs of the donor set. The �rst four graphs illustrate Si (D i ) for jD i j = 0 ; : : : ; 5, while
the last graph shows how the feasible schedule set changes as the number of donors increases.

Figure 4: An illustration of a feasible schedule correspondenceSi satisfying Assumptions 1,
2, and 3. The �rst four graphs illustrate Si (D i ) for jD i j = 1 ; : : : ; 4. The last graph shows how
the feasible schedule set changes as the number of donors increases.

The main result of this section is as follows:

Theorem 2. Under Assumptions 1, 2, and 3, every optimal mechanism is donor mono-

tonic.37

The proof of this result is substantially involved and we relegate it to Appendix A.

We give a sketch of the proof here.

Proof Sketch. We �rst de�ne an auxiliary matching market that is isomorphic to the

original problem, which we refer to as anextended problem. In this market, the blood

bank is represented as a pseudo-patient and its inventory is represented by pseudo-donors



dummy donors so that, without loss of generality, we can focus on the simple case where

any patient cannot receive blood from her own compatible donors. In such an extended



Finally, Lemma 4 states that the optimal rules are donor monotonic. We proceed

by contradiction. Let F be an optimal rule, D̂ be an extended problem, andD̂ 0 be

the extended problem induced by patienti concealing a donor. Suppose that patient

i receives more blood under the matchingF (D̂ 0) than under the matching F (D̂ ). By

Lemma 3, there is a cycle or a chainC from F (D̂ ) to F (D̂ 0). Then, (D̂ ). By



Assumption 4. For every patient i 2 I and donor setsD i ; D 0
i 2 D i such thatD 0

i � D i ,

we have

ˆ if (r; s) 2 S i (D 0
i ) and r � ni , then there existss0 such that(r; s0) 2 S i (D i ),

ˆ if (r; s) 2 S i (D i ) and (r; s0) 2 S i (D 0
i ), then s � s0.

It is straightforward to see that Assumption 4 implies Assumption 3. Therefore, under

Assumptions 1, 2 and 4, the optimal mechanisms are donor monotonic. Moreover, in this

case, if a patient reports a subset of her donors and still receives the same amount of

blood, then the second condition in Assumption 4 implies that her donors do not donate

less blood. Hence, we have the following result.

Theorem 3. Under Assumptions 1, 2, and 4, every optimal mechanism is strongly donor

monotonic.

One important circumstance under which strong donor monotonicity can be achieved

is when the feasible schedule correspondences feature exogenous exchange rates, in the

sense that for every possible amount of blood received in a feasible schedule set, there

is a unique amount of supply associated with it. That is, for everyi 2 I , D i 2 D i

and (r; s) 2 S i (D i ), there does not exists0 6= s such that (r; s0) 2 S i (D i ). In this case,

Assumption 3 and Assumption 4 are equivalent.

Remark 2. Suppose that the exchange rates are exogenous. Then Assumptions 1, 2, and

3 pin down a particular class of feasible schedule correspondences. Assume that for every

i 2 I , D i 6= ; for someD i 2 D i , then Assumptions 1, 2, and 3 are satis�ed if and only

if the following is true for everyi 2 I :

ˆ for every D i 2 D i such thatSi (D i ) 6= f (0; 0)g, there existsi (D i ); r i (D i ) 2 Z+ , where

si (D i ) � j D i j, si (D i ) = 0 if ni = 0, and ni � r i (D i ) � ni , such that

Si (D i ) = f (r; s) 2 W i : s � si (D i ) = r � ni ; s � j D i j; and ni � r � r i (D i )g;

ˆ for every D i 2 D i and D 0
i � D i such that Si (D i ) 6= f (0; 0)g and Si (D 0

i ) 6= f (0; 0)g,

si (D i ) � si (D
0
i ) and r i (D i ) � r i (D 0

i ), and

ˆ for every D i 2 D i and D 0
i � D i , Si (D i ) = f (0; 0)g implies Si (D 0

i ) = f (0; 0)g.

Thus, if a patient i participates in the program, then she has to supplysi (D i ) units to

receive her minimum guarantee. Beyond this schedule, she has to supply one additional

unit for each additional unit received, with the maximal amount received being restricted

by r i (D i ). We refer to such feasible schedule correspondences astwo-part tari�s , which

include both the one-for-one exchange rate policy and the Xi'an policy in Example 1 as



Figure 5: An illustration of the two-part tari� policy. The patient i has to supply two units
to receive her minimum guarantee ofni = 3 units. The �rst four graphs illustrate Si (D i )
for jD i j 2 f 0; : : : ; 4g, while the last graph shows how the feasible schedule set changes as the
number of donors increases.

Strong donor monotonicity of optimal mechanisms can also be achieved under feasible

schedule correspondences that incorporate endogenous exchange rates. An example is

given in Figure 6.

Figure 6: An illustration of a feasible schedule correspondence satisfying Assumptions 1, 2,
and 4. Exchange rates are endogenous when the patienti has three or �ve donors.

4.3 Comparative Statics
In establishing the donor monotonicity of the optimal mechanisms, we need Assump-

tion 3, which requires that if a patient i brings forward a donor setD i larger than D 0
i ,

i.e., D 0
i � D i , then Si (D i ) is weakly more favorable thanSi (D 0

i ) at D 0
i . A weakly more

favorable feasible schedule set is given to the patient to incentivize her to report the full

set of donors. It is then natural to consider the e�ect of making her feasible schedule

set weakly more favorable, while keeping her donor set �xed. To this end, we introduce

a notation to denote the possibility of changing the underlying feasible schedule corre-

spondences. For a given pro�le of feasible schedule correspondencesS = ( Si ) i 2 I and an

30



optimal mechanismf , let f
�
D j S

�
be the outcome off for any D 2 D under S.

Theorem 4.





and endogenous exchange rates, bringing rigor and transparency to the allocation system.



plemental Material shows that a priority mechanism may not be donor monotonic under

such an exogenous exchange rate policy, due to L-convexity not being satis�ed.

However, we can generate endogenous exchange rate policies that closely approximate

the two-for-one exchange rate, such that under these policies the optimal mechanisms are



feature of this problem in which patients arrive over time is less crucial in implementation

once initial conditions are set.

We propose the establishment of a donor registry system that allows patients to

register information about their potential replacement donors at the time they are seeking

blood. A potential donor registered into the system may later be utilized depending on

her blood type or the amount of blood the patient will end up receiving. When a certain

threshold of potential donors is reached (for example, this could be daily for logistical

reasons),38 one of our practical optimal mechanisms is implemented to determine the

actual blood assignment of non-urgent patients together with the potential replacement

donors that are requested to donate blood. After the chosen donors donate and the blood

is tested and processed, the medical procedures requiring transfusions will be conducted

in the following days, or if the slack is large in the blood bank, then the replacement

donor blood can be used to replenish the inventory after the patients receive blood in the

preceding days.39



some amount of donor plasma and thus follow the commonly practiced ABO-identical

and Rh D-compatible protocol. We consider three patient set sizesjI j = 25; 50; 100,

representing medium to large hospital systems and their blood banks. Each patienti

is assumed to need a maximum ofni units, determined by an independent and identi-

cal draw from the uniform distribution with the support set f



Figure 10: Total units of blood transfused to the patients in the simulations for patient
set sizesjI j = 25; 50; 100 as a function of� (the ratio of the maximum units in the blood
bank inventory to the maximum number of replacement donors), under the three allocation
protocols.

panels) and the marginal distribution of net demand calculated as the di�erence between



Figure 11: Distributions of transfusion units (top panels) and net demand (bottom panels)
in the simulations for jI j = 50, when � = 0 (left panels) and � = 1

10 (right panels).

For jI j = 50 and � = 0, only 33 units of blood are transfused (Figure 10), with more

than 26 patients receiving no blood and no patient receiving more than 4 units (Figure

11



to the complementarities in dual organ exchanges in Ergin et al. (2017). However, the

one-for-one exchange rate is not crucial in our model while it is important in the latter

study. The di�erences in institutional details between solid organ exchange applications

and our main application are explained in Section 2. Our two donor monotonicity no-

tions would reduce to the donor monotonicity notion introduced in Roth et al. (2005) if

patients had unit demand and the exchange rate were one-for-one.

The WHO guidelines suggest that blood should only come from VNRDs and economic

incentives can adversely a�ect both blood safety and blood donation. The position of the

WHO has been questioned based on recent evidence (Lacetera et al., 2013). In particular,

Lacetera et al. (2012) provide evidence from a natural �eld experiment showing that

economic incentives have a positive e�ect on voluntary donation and can encourage pro-

social behavior. Additionally, Slonim et al. (2014) also study blood donation from an

economic perspective, and discuss methods to increase blood supply and improve the

supply and demand balance without market prices. Pay-it-forward and pay-it-backward

incentive schemes for encouraging COVID-19 convalescent plasma donation have recently

been proposed by Kominers et al. (2020) in a market design context.43

There are not many papers on mechanism or market design for multi-unit exchange of

indivisible goods, even under the restriction of one-for-one exchange rate. Besides Ergin et

al. (2017), two notable exceptions are Manjunath and Westkamp (2021), who study shift

exchanges for medical doctors and other professionals as a market design problem,44 and

Andersson et al. (2021), who consider the design of time banks or favor barter markets

to be cleared by centralized clearinghouses.45 Our paper as well as Andersson et al.

43They propose issuing vouchers for the convalescent plasma donation of patients who recover from
COVID-19 that can be used by these donors' family members who may become sick in the future to gain
prioritized access to plasma therapy or for their own treatment, if they are still sick. Since one donor
can donate plasma that can treat more than one patient, the system can collect enough plasma to treat
all patients. Their paper inspects the steady-state analysis of a stylized large-market model, while ours
is on mechanism design in a �nite environment.

44In Manjunath and Westkamp (2021), for each agent there are three indi�erence classes of objects:
desirable objects, undesirable objects that she is endowed with, and undesirable objects that she is
not endowed with. This trichotomous preference domain is more general than ours, and suits their



(2021) substantially generalizes the priority mechanism introduced for bilateral kidney



compatibility-based preferences model.50

In closing, it is our hope that in addition to developing the theory for e�cient blood

allocation mechanisms with good incentive properties, our approach will be an important

�rst step toward a blueprint of transparent, equitable, and systematic replacement donor

programs that are in line with the goals of the WHO. Relaxing the constraints imposed

by �xed exchange rates, this approach can help to overcome important practical frictions

such as coercion and emerging black markets in places where these programs are not

adequately organized.
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Online Appendix

A Proofs

A.1 Proof of Theorem 1
Theorem 1 follows from the fact that every sequential targeting mechanism is a

weighted maximal mechanism, which is proved in Appendix C.1 in Supplemental Mate-

rial.

A.2 Proof of Theorem 2
We �rst show that Assumptions 1, 2 and 3 imply the following two assumptions on

the feasible schedule correspondences, which will be useful in our proof.

Assumption 1 0. For every i 2 I , D i 2 D i , and (r; s); (r 0; s0) 2 S i (D i ), we have

1. If r 0 > r and s0 > s , then

(r + 1; s + 1) 2 S i (D i ) and (r 0 � 1; s0 � 1) 2 S i (D i ):

2. If r 0 > r and s0 � s, then

(r + 1; s) 2 S i (D i ) and (r 0 � 1; s0) 2 S i (D i ):

3. If s0 > s and r 0 � r , then

(r; s + 1) 2 S i (D i ) and (r 0; s0 � 1) 2 S i (D i ):

Assumption 2 0. For every i 2 I , D i ; D 0
i 2 D i with D 0

i � D i , (r; s) 2 S i (D i ) and

(r 0; s0) 2 S i (D 0
i ), we have

1. If r 0 > r; s 0 > 0 and s <
�
�D i

�
� , then

(r + 1; s + 1) 2 S i (D i ) and (r 0 � 1; s0 � 1) 2 S i (D 0
i ):

2. If r 0 > r and s0 � s, then

(r + 1; s) 2 S i (D i ) and (r 0 � 1; s0) 2 S i (D 0
i ):

Lemma 1. Assumption 10 and Assumption 20 are satis�ed.

Proof of Lemma 1. Consider anyi 2 I and D i 2 D i . Let Si (D i ) = S. For any

x; y 2 W i , where x = ( r; s) and y = ( r 0; s0), denote dis(x; y) = r 0 � r + s0 � s, and

y > x if r 0 > r and s0 > s . Suppose that x = ( r; s) 2 S, y = ( r 0; s0) 2 S, and

y > x . We want to �rst show that ( r + 1; s + 1) 2 S. If dis(x; y) = 2, then we are

done. If dis(x; y) > 2, then considerz =
� x+ y

2

�
> x . By TJ/F50 11.9552 Tf 26.659 0 Td [(rnd [(p(an6(w)-4L-,)-)-332(is)-xillo)2y.795 - Td [(,)-512(and)]TJ27/F562.9552 Tf -421.z -4.338 Td [())]TJ1 0.911.9552 Tf 28.182 0 Td [(2)]TJ/F0.911.9552 Tf 14.317 0 Td [(S)]TJ/F27 11.9552Tf 20.89sho



2 � dis(x; z) < dis(x; y). If dis(x; z) > 2, we can repeat the argument and �ndz0 2 S

such that z0 > x and 2 � dis(x; z0) < dis(x; z). Continuing in this fashion, in the

end we must have (r + 1; s + 1) 2 S. By symmetric arguments, it can be shown that

(r 0 � 1; s0 � 1) 2 S. So Condition 1 in Assumption 10 is satis�ed.

Next we show Condition 2. Suppose thatx = ( r; s) 2 S, y = ( r 0; s0) 2 S, r 0 > r and

s0 � s. First, we argue that there existss00� s such that (r + 1; s00) 2 S. If r 0 = r + 1, we

are done. Ifr 0 > r +1, then consider
� x+ y

2

�
= ( r1; s1). We haver 0 > r 1 > r and s1 � s. By

Assumption 1, (r1; s1) 2 S. If r1 > r +1, we can repeat the argument and �nd (r2; s2) 2 S

such that r1 > r 2 > r and s2 � s. Therefore, eventually we have (r + 1; s00) 2 S for some

s00� s. Denotez = ( r + 1; s00). If s00< s , consider
�

x+ z
2

�
= ( r + 1; s3). Then s00< s 3 � s.

By Assumption 1, (r + 1; s3) 2 S. If s3 < s , we can repeat the argument and �nd some

s4 such that (r + 1; s4) 2 S and s3 < s 4 � s. Therefore, we must have (r + 1; s) 2 S.

By symmetric arguments, it can be shown that (r 0 � 1; s0) 2 S. Finally, Condition 3 in

Assumption 10 can be shown in a similar way as the proof of Condition 2.

To show Assumption 20, consider anyi 2 I , D i ; D 0
i 2 D i with D 0

i � D i , (r; s) 2 S i (D i )

and (r 0; s0) 2 S i (D 0
i ).

Suppose thatr 0 > r; s 0 > 0 and s <
�
�D i

�
� . Sincer 0 > 0, by the de�nition of feasible

schedule correspondences,Si (D 0
i ) 6= f (0; 0)g and r 0 � ni . Then by Assumption 3 (Non-

diminishing favorability in donors), there existss1 such that (r 0; s1) 2 S i (D i ). Since

r 0 > r and s < jD i j, by Assumption 2 (Feasibility of positive price), there existss2 > s

such that (r 0; s2) 2 S i (D i ). Then, given that (r 0; s2) > (r; s), it follows from Condition 1

in Assumption 10 that ( r + 1; s + 1) 2 S i (D i ). This also implies that Si (D i ) 6= f (0; 0)g,

and hencer � ni . Recall that Si (D 0
i ) 6= f (0; 0)g. So there existss3 such that (ni ; s3) 2

Si (D 0
i ). Since r 0 > r � ni and s0 > 0, by Assumption 2, there existss4 < s 0 such that

(ni ; s4) 2 S i (D 0
i ). Then, given that (r 0; s0) > (ni ; s4), it follows from Condition 1 in

Assumption 10 that ( r 0 � 1; s0 � 1) 2 S i (D 0
i ).

It remains to show Condition 2 in Assumption 20. Suppose thatr 0 > r and s0 � s.

Then r 0 � ni . By Assumption 3, there existss1 � s0 � s such that (r 0; s1) 2 S i (D i ).

It follows from Condition 2 in Assumption 10 that ( r + 1; s) 2 S i (D i ). Then, we argue

that ( r; s0) 2 S i (D i ). This is true if s0 = s. Suppose thats0 (r 0; s1) i (D i r; s) i (D i



(r; s3) 2 S i (D 0
i ). Since (r; s0) 2 S i (D i ) and s0 � j D 0

i j, by Assumption 3, there exists

s4 � s0 such that (r; s4) 2 S i (D 0
i ). As (r 0; s0) 2 S i (D 0

i ), r 0 > r and s0 � s4, it follows from

Condition 2 in Assumption 10 that ( r 0 � 1; s0) 2 S i (D 0
i ).

We introduce new machinery to prove this theorem. In particular, we will construct

extended problemsin which each blood type has a replica and there are some new dummy

agents. Such a construction mainly serves two purposes: it helps us represent allocations

asmatchings, which specify the donors that each patient receives blood from; it allows us

to focus on the simple case where no patient receives blood from her own (compatible)

donors.

First, we treat the blood bankbas if it were apseudo patientand introduce a donor set

for it. It has a set of (volunteer non-remunerated) donorsDb, where for each blood type

X 2 B the blood bank has



denoted asM i by a slight abuse of notation, such that

1. M i \ M j = ; for every i; j 2 Î with i 6= j , and [ i 2 Î M i = D̂ ,

2. for everyi 2 Î n f bg and d 2 M i n D i , � d 2 Ĉ(� i ),

3. for everyi 2 Î n f bg, (
�
�M i n D i

�
� ;

�
�2 3.431 Td [(M)]T (or)-327(ev)27(ery)]TJ/F50 11.9552



anisms. For eachX 2 B, let W i X̂
= f 0; 1; : : : ; ni X̂

g2. A vector ^



1. � d = X for every d 2 M X
i X̂

,

2. � (d) = 1 for every d 2 M X
i X̂

n Db, and

3.
�
�M X

i X̂

�
� =

P
j 2 I :X 2C(� j )

�
�M X̂

j

�
� .

Then we construct a matchingM for D̂ as follows:

ˆ for eachj 2 I , M j =
�

[ X 2C(� j ) M X̂
j

�
[ f d 2 D j : � (d) = 0 g,

ˆ for eachX 2 B, M i X̂
= M X

i X̂
[

�
D i X̂

n
�

[ j 2 I :X 2C(� j ) M X̂
j

� �
, and

ˆ M b = D̂ n
�
([ j 2 I M j ) [ ([ X 2B M i X̂

)
�
:

Therefore, each patientj 2 I is matched with � X (j ) dummy donors of typeX̂ for every

X 2 C(� j ) (recall that for the extended problem,X̂ 2 Ĉ(� j )), and j 's own donor d is

matched with j if and only if � (d) = 0. Moreover, for each dummy patienti X̂ , the number

of X donors fromI [ f bg matched with her is equal to the number of her̂X donors that

are not matched with her (recall thatĈ(X̂ ) = f X g). Hence,M is a well-de�ned matching

for D̂ and it is welfare equivalent to� .

Part 2. On the other hand, let M 2 M (D̂ ). Construct � as follows:

ˆ for eachj 2 I and X 2 C(� j ), let � X (j ) =
�
� � d 2 M j n D j : � d 2 f



D 2 D , f (D) and F (D̂ ) are welfare equivalent.

Let D 2 D . By the claim above, there exists� 2 A (D) that is welfare equivalent to

F (D̂ ). By the de�nition of f , w(f (D)) � w(� ), where w(� ) = ^
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Figure 12: Suppose that I = f 1; 2; 3g, with � 1 = A, � 2 = B and � 3 = O, D̂ = D̂ 0, and the
donor sets are given byD1 = f B1g, D2 = f A2; O2g, D3 = f B3g and Db = ; , where a type-X
donor of a patient i is denoted asX i . For simplicity, we omit the dummy patients. For every
i 2 I , ni = 1, ni = 0 and the exchange rate is one-for-one. Assume ABO-identical transfusion.
Consider the following two matchings M and M 0: M 1 = f B1g, M 2 = f A2; B3g, M 3 = f O2g
and M b = ; ; M 0

1 = f A2g, M 0
2 = f O2; B1g, M 0

3 = f B3g and M 0
b = ; . The above graph gives a

cycle C from M to M 0, and we haveM + C = M 0 and M 0� C = M .

remove dt � 1 from M i t . Condition 1 above guarantees that this leads to a well-de�ned

function, which we denote asM + C and satis�es Conditions 1 and 2 in the de�nition of a

matching (for D̂ ). The patients involved in the cycle may not be distinct. But Condition

4 above says that if a patienti 2 Î n f bg appears twice in the cycle, then her schedule

is not a�ected by the exchanges, i.e., the amount of blood received and the amount of

blood supplied remain the same. Note that this condition also implies that any patient

cannot appear more than twice in the cycle. Finally, if a patienti 2 Î n f bg is assigned a

di�erent schedule underM + C than under M , then she appears only once in the cycle,

and she either receives one more unit and supplies one more unit, or receives one less

unit and supplies one less unit. Then Conditions 2 and 3 above imply Condition 3 in

the de�nition of a matching. Therefore M + C is a matching forD̂ . Similarly, we could

instead start from M 0 and assign each patient in the cycle the donor she is pointed by

(who is one of herM matches) instead of the donor she points to (who is one of herM 0

matches). That is, for eacht 2 f 1; : : : ; �tg, add dt � 1 to M 0
i t

and removedt from M 0
i t

. These

exchanges also lead to a well-de�ned matching for̂D 0, denoted asM 0� C. In Figure 12,

we give an example of a cycle and the construction of new matchings using this cycle.

It is wise to note that the cycle operations do not necessarily make all patients involved

better o� or worse o�. Instead, they generate new matchings that are closer to each other

in terms of the matches of the patients.

Another concept similar to a cycle is a chain. Achain from M to M 0 is a di-

rected graph of patients and donors in which each patient/donor points to the next

donor/patient in the chain, and is represented as a listC = ( i 1; d1; : : : ; i �t � 1; d�t � 1; i �t ),
�t � 2, such that

1. For everyt 2 f 1; : : : ; �tg, i t 2 Î such that if i t = b then t 2 f 1; �tg, and i 1 6= i �t .

53



2. For everyt 2 f 1; : : : ; �t � 1g, dt 2 M 0
i t

n M i t and dt 2 M i t +1 .

3. For everyt 2 f 2; : : : ; �t � 1g, if dt � 1 2 D i t and dt =2 D i t , then

(
�
�M i t nD i t

�
�+1;

�
�D i t nM i t

�
�+1) 2 S i t (D i t ) and (

�
�M 0

i t
nD 0

i t

�
� � 1;

�
�D 0

i t
nM 0

i t

�
� � 1) 2 S i t (D

0
i t

):

4. For everyt 2 f 2; : : : ; �t � 1g, if dt � 1 =2 D i t , and dt 2 D i t , then

(
�
�M i t nD i t

�
� � 1;

�
�D i t nM i t

�
� � 1) 2 S i t (D i t ) and (

�
�M 0

i t
nD 0

i t

�
�+1;

�
�D 0

i t
nM 0

i t

�
�+1) 2 S i t (D

0
i t

):

5. If i �t 6= b, then

(
�
�M i �t

n D i �t

�
� ;

�
�D i �t

n M i �t

�
� + 1) 2 S i �t

(D i �t
) and (

�
�M 0

i �t
n D 0

i �t

�
� ;

�
�D 0

i �t
n M 0

i �t

�
� � 1) 2 S i �t

(D 0
i �t

)

when d�t � 1 2 D i �t
, and

(
�
�M i �t

n D i �t

�
� � 1;

�
�D i �t

n M i �t

�
�) 2 S i �t

(D i �t
) and (

�
�M 0

i �t
n D 0

i �t

�
� + 1;

�
�D 0

i �t
n M 0

i �t

�
�) 2 S i �t

(D 0
i �t

)

when d�t � 1 =2 D i �t
.

6. If i 1 6= b, then

(
�
�M i 1 nD i 1

�
� ;

�
�D i 1 nM i 1

�
� � 1) 2 S i 1 (D i 1 ) and (

�
�M 0

i 1
nD 0

i 1

�
� ;

�
�D 0

i 1
nM 0

i 1

�
� + 1) 2 S i 1 (D 0

i 1
)

when d1 2 D i 1 , and

(
�
�M i 1 nD i 1

�
� + 1;

�
�D i 1 nM i 1

�
�) 2 S i 1 (D i 1 ) and (

�
�M 0

i 1
nD 0

i 1

�
� � 1;

�
�D 0

i 1
nM 0

i 1

�
�) 2 S i 1 (D 0

i 1
)

when d1 =2 D i 1 .

7. If i t = i t0 = i for somet; t 0 such that 1 < t < t 0 < �t, then either (i) dt ; dt � 1 2 D i and

dt0; dt0� 1 =2 D i , or (ii) dt ; dt � 1 =2 D i and dt0; dt0� 1 2 D i .

If i �t
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Figure 13: Suppose that I = f 1; 2; 3g with � 1 = � 2 = A and � 3 = B . The donor sets in two
extended problemsD̂ and D̂ 0 are given byD1 = f B1g, D 0

1 = ; , D2 = D 0
2 = ; , D3 = D 0

3 = f A3g
and Db = f Ab; A0

b; Bbg, where X i (or X 0
i ) denotes a type-X donor of patient i . For simplicity,

we omit the dummy patients. For every i 2 I , ni = 2, ni = 0 and the feasible schedules are



Patients: 1 (A) 2 (A) 3 (B) 4 (O) 5 (AB ) 6 (A) 7 (O) b
Donors: B1 B 0

1 AB 1 O1 B2 A3 A4 A5 O5 AB 6 A7 Ab A0
b Ob

(n i ; n i ) : (0; 3) (1; 3) (0; 3) (0; 3) (0; 3) (0; 3) (0; 3)

M B1 AB 1 A7 A0
b Ab A3 A4 Ob A5 O5 AB 6 O1 B 0

1 B2

M 0 B 0
1 A7 A0

b Ab B2 A3 A4 B1 Ob AB 1 AB 6 A5 O5 ;

M 00 B1 O1 A7 A0
b Ab A3 A4 Ob A5 AB 1 AB 6 O5 B 0

1 B2

Table 2: The patients, their donors, the minimum guarantees and the maximum needs for
Example 2. When Patient 1 truthfully reports his donor set, the matching M is obtained.
When he conceals his donorO1, the matching M 0 is obtained, in which he receives more blood.
M 00is another matching that we explain in the example.

necessary condition for any rule that is not donor monotonic. Using this result, we show

every optimal rule is donor monotonic (Lemma 4), which concludes the proof.

Lemma 3. Consider anyD; D 0 2 D and i 2 I such thatD 0
i � D i ,

�
�D i n D 0

i

�
� = 1, and

D 0
j = D j for every j 2 I n f ig. If M 2 M (D̂ ), M 0 2 M (D̂ 0), and

�
�M 0

i n D 0
i

�
� >

�
�M i n D i

�
� ,

then there exists a cycle or a chain fromM to M 0.

The proof of this lemma is rather involved. We illustrate the ideas behind the proof

using an example �rst. The example only demonstrates substantially di�erentcasesin

the construction of a cycle or a chain in the proof, as some of the considered cases use

similar constructions.

Example 2. Suppose thatI = f 1; : : : ; 7g. We omit the dummy patients for simplicity.

The �rst row in Table 2 gives the blood type of each real patienti 2 I . The second row

gives the donor setD i for eachi 2 I [ f bg, whereX i (or X 0
i ) denotes a type-X donor of

patient i . Let ni = 3 for every i 2 I , n2 = 1 and ni = 0 for every i 2 I n f 2g. Assume

ABO-identical transfusion.

We will also consider the situation in which Patient 1 conceals his donorO1.57 Let

D 0
1 = D1 n f O1g;

and D 0
i = D i for every i 2 I n f 1g. Finally, for every i 2 I and everyD 00

i 2 D i , let

Si (D 00
i ) = f (r; s) : ni � r � ni ; 0 � s �

�
�D 00

i

�
� ; s � r g:

The last three rows in Table 2 specify three matchings,M , M 0 and M 00, where M

and M 00are matchings forD̂ and M 0 is a matching forD̂ 0. Given that Patient 1 receives

more blood underM 0 than under M , we discuss how to �nd a cycle or a chain fromM

to M 0 using an iterative \pointing procedure fromM to M 0" that is formally de�ned in

the proof of Lemma 3. At each step of the procedure, a patient points to a donor that he

57Assume that the patients are male and the donors are female in this example.

56
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Figure 14: A cycle and a chain fromM to M 0 found using the pointing procedure fromM to
M 0 (illustrating Case 2 and Case 3 in the proof of Lemma 3, respectively).



Recall that Patient 2 could also point to A4. If Patient 2 points to A4, then A4

points to Patient 4. Given that Patient 4 cannot point to his own donor and he does not

receive more blood underM 0, we stop here. In this case, a chain is identi�ed as in the

graph in Figure 14. This construction corresponds to Case 3 in the proof of Lemma



Figure 15: A cycle from M to M 0 and another directed graph, apseudo-cyclefrom M to M 0,
in the modi�ed example. Both are constructed by reversing the edge orientation of the graphs
found using the pointing procedure fromM 0 to M (illustrating Subcase 4.1 and Subcase 4.5 in
the proof of Lemma 3, respectively).

15. This construction corresponds to Subcase 4.1 in the proof of Lemma 3.

On the other hand, if Patient 5 points to O5, then O5 points to Patient 7, who



1. If dt � 1 2 D i t : We have two cases:

(a) If there exists d 2 D i t such that d 2 M 0
i t

n M i t : Then at Step t, let i t point to

dt = d, and dt point to i t+1 such that dt 2 M i t +1 .58

(b) If there does not existd 2 D i t such that d 2 M 0
i t

nM i t : Then
�
�D 0

i t
nM 0

i t

�
� >

�
�D i t nM i t

�
� .

We have two subcases:

i. If
�
�M 0

i t
nD 0

i t

�
� >

�
�M i t nD i t

�
� : Then there existsdt =2 D i t such that dt 2 M 0

i t
nM i t .

At Step t, let i t point to dt , and dt point to i t+1 such that dt 2 M i t +1 .

ii. If
�
�M 0

i t
n D 0

i t

�
� �

�
�M i t n D i t

�
� : Then i t does not point and stop ati t at Step t � 1.

2. If dt � 1 =2 D i t : We have two cases:

(a) If there exists d =2 D i t such that d 2 M 0
i t

n M i t : Then at Step t, let i t point to

dt = d, and dt point to i t+1 such that dt 2 M i t +1 .

(b) If there does not existd =2 D i t such that d 2 M 0
i t

nM i t : Then
�
�M 0

i t
nD 0

i t

�
� <

�
�M i t nD i t

�
� .

We have two subcases:

i. If
�
�D 0

i t
nM 0

i t

�
� <

�
�D i t nM i t

�
� : Then there existsdt 2



The �rst circumstance implies that any patient can be pointed at most three times in

the procedure. Hence, the procedure always stops in a �nite number of steps.

We consider the following four cases based on these circumstances. Case 1 and Case 2

cover the �rst two circumstances in order and show the existence of a cycle in each case.

Case 3 covers the third and the fourth circumstances together wheni 1 does not supply

more blood underM 0 than under M , and shows the existence of a chain. Finally, Case

4 covers the third and the fourth circumstances together wheni 1 supplies more blood

under M 0 than under M , and shows the existence of a cycle or a chain. This is the most

involved case and we will handle it the last.

Case 1.The procedure stops atd�t at Step �t.

Then for somet < �t, i t = i �t =2 f i 1; bg and neither of the following is true:

1. dt ; dt � 1 2 D i t and d�t ; d�t � 1 =2 D i t .

2. dt ; dt � 1 =2 D i t and d�t ; d�t � 1 2 D i t .

We show that (i t ; dt ; : : : ; i �t � 1; d�t � 1) is a cycle fromM to M 0.

First, for any t such that t < t � �t � 1, i t =2 f i 1; bg, since otherwise the procedure

stops at i t at Step t � 1. It follows that D i t = D 0
i t

for every t such that t � t � �t � 1. By

the construction of the pointing procedure fromM to M 0, Condition 1 in the de�nition

of a cycle is satis�ed. Next, we show Condition 2 and Condition 3.

First, consider anyt such that t < t � �t � 1. If dt � 1 2 D i t and dt =2 D i t , then by the

construction, we have
�
�M 0

i t
n D 0

i t

�
� >

�
�M i t n D i t

�
� and

�
�D 0

i t
n M 0

i t

�
� >

�
�D i t n M i t

�
� . Since

(
�
�M i t n D i t

�
� ;

�
�D i t n M i t

�
�) 2 S i t (D i t ) and (

�
�M 0

i t
n D 0

i t

�
� ;

�
�D 0

i t
n M 0

i t

�
�) 2 S i t (D

0
i t

) = Si t (D i t );

it follows from Assumption 10 that

(
�
�M i t nD i t

�
� + 1;

�
�D i t nM i t

�
� + 1) 2 S i t (D i t ) and (

�
�M 0

i t
nD 0

i t

�
� � 1;

�
�D 0

i t
nM 0

i t

�
� � 1) 2 S i t (D

0
i t

):

Similarly, if dt � 1 =2 D i t and dt 2 D i t , then by the construction we have
�
�M 0

i t
n D 0

i t

�
� <

�
�M i t n D i t

�
� and

�
�D 0

i t
n M 0

i t

�
� <

�
�D i t n M i t

�
� . It follows from Assumption 10 that

(
�
�M i t nD i t

�
� � 1;

�
�D i t nM i t

�
� � 1) 2 S i t (D i t ) and (

�
�M 0

i t
nD 0

i t

�
� + 1;

�
�D 0

i t
nM 0

i t

�
� + 1) 2 S i t (D

0
i t

):

Second, consideri t . Suppose thatd�t � 1 2 D i t and dt =2 D i t . Then either dt � 1 2 D i t or

d�t =2 D i t , as the procedure stops at the donord�t . Since we have either (i)d�t � 1 2 D i t and

d�t =2 D i t , or (ii) dt � 1 2 D i t and dt =2 D i t , by the construction,
�
�M 0

i t
n D 0

i t

�
� >

�
�M i t n D i t

�
� and

�
�D 0

i t
n M 0

i t

�
� >

�
�D i t n M i t

�
� :

Then by Assumption 10,

(
�
�M i t nD i t

�
� + 1;

�
�D i t nM i t

�
� + 1) 2 S i t (D i t ) and (

�
�M 0

i t
nD 0

i t

�
� � 1;

�
�D 0

i t
nM 0

i t

�
� � 1) 2 S i t (D

0
i t

):

61



That is, Condition 2 in the de�nition of a cycle is satis�ed for i t . By similar arguments,

it can be shown that Condition 3 is also satis�ed fori t .

It remains to show Condition 4. If i t = i t0 and t < t < t 0 � �t � 1, then either (i)

dt ; dt � 1 2 D i t and dt0; dt0� 1 =2 D i t , or (ii) dt ; dt � 1 =2 D i t and dt0; dt0� 1 2 D i t , since otherwise



20. Finally, we verify Condition 7 for i 1 and i �t . For any t 2 f 2; : : : ; �t � 1g, i 1 6= i t ,

since otherwise the procedure stops at an earlier step. Suppose thati �t = i t for some

t 2 f 2; : : : ; �t � 1g. Then i �t = i t 6= b. First consider the case thatd�t � 1 2 D i t . If dt 2 D i t ,

then, given that dt 2 M 0
i t

nM i t , i �t = i t should point to this donor (or some other donor of

her own) at Step�t, which contradicts to the fact that the pointing procedure stops ati �t .

So dt =2 D i t . Then dt � 1 =2 D i t , since otherwisei �t = i t should point to dt (or some other

donor that is not her own) at Step �t. In the case that d�t � 1 =2 D i t , it can be similarly

shown that dt ; dt � 1 2 D i t . These are the crucial conditions to check; the other conditions

can be shown similarly as in Case 1.

Case 4.The procedure stops ati �t at Step �t � 1, i �t 6= i 1, and
�
�D 0

i 1
n M 0

i 1

�
� >

�
�D i 1 n M i 1

�
� .

In this case, we may not have (
�
�M i 1 n D i 1

�
� + 1;

�
�D i 1 n M i 1

�
�) 2 S i 1 (D i 1 ), and hence

(i 1; d1; : : : ; d�t � 1; i �t ) may not be a chain fromM to M 0.

Let j 1 = i 1. Since
�
�D 0

j 1
n M 0

j 1

�
� >

�
�D j 1 n M j 1

�
� , there exists a donorc1 2 D 0

j 1
such

that c1 2 M j 1 n M 0
j 1

0
j



and the following is not true: she is pointed by and points to her own donors in one

instance, and is pointed by and points to donors who are not her own in the other

instance,

ˆ when somej 62 fj 1; bg has appeared before in the pointing procedure fromM to M 0,

and in this previous appearance she is noti �t . Moreover, the following is not true: she

is pointed by and points to her own donors in one instance, and is pointed by and

points to donors who are not her own in the other instance,60

ˆ when b is pointed,

ˆ when somej 62 fj 1; bg does not point,

ˆ when j 1 is pointed.

Due to the �rst circumstance, the pointing procedure fromM 0 to M also stops in a

�nite number of steps. Since we are seeking a cycle or a chain fromM to M 0, after the

procedure stops we reverse the orientation of the constructed edges in (j 1; c1; j 2; c2; : : :).

We consider the following �ve subcases based on these circumstances. Subcase 4.1



edges in the second graph should be reversed. Then (j t ; ct � 1; : : : ; c1; i1; d1; : : : ; i t � 1; dt � 1)

is a cycle fromM to M 0.

Subcase 4.3.The procedure stops atj t at Step t � 1, and j t 6= j 1.

Then either j t = b or the patient j t does not point.

If j t = i �t = b, then (j t ; ct � 1; : : : ; c1; i1; d1; : : : ; i �t � 1; d�t � 1) is a cycle fromM to M 0.

If it is not true that j t = i �t = b, then (j t ; ct � 1; : : : ; c1; i1; d1; : : : ; d�t � 1; i �t ) is a chain from

M to M 0. To see this, we verifyj t 6= i �t and Condition 6 in the de�nition of a chain. First,

assume to the contrary,j t = i �t . Then j t = i �t 2 Î n f j 1; bg. If d�t � 1 2 D i �t
, then ct � 1 =2 D i �t

,

since otherwise in the pointing procedure fromM 0 to M , j t should point to d�t � 1 (or some

other donor of her own) at Stept



d =2 D j t with d 2 M 0
j t

n M 00
j t

, and the pointing procedure fromM 0 to M 00starts with j t

pointing to somec 2 D 0
j t

with c 2 M 00
j t

nM 0
j t

. Sincect � 1 =2 M 0
i for any i 2 Î , the concealed

donor ct � 1 is not pointed in the pointing procedure fromM 00to M 0. Moreover,ct � 1 2 M 00
j t

implies that ct � 1



construction of the chainC from M 00 to M 0, we have
�
�M 0

`w
n D 0

`w

�
� >

�
�M 00

`w
n D 00

`w

�
� and

�
�D 0

`w
n M 0

`w

�
� >

�
�D 00

`w
n M 00

`w

�
� . Then by Observation 2,

�
�M 0

`w
n D 0

`w

�
� >

�
�M `w n D `w

�
� and

�
�D 0

`w
n M 0

`w

�
� >

�
�D `w n M `w

�
� . Hence it follows from Assumption 10 that Condition 3 is

satis�ed. Condition 4 can be shown in a similar manner.

Next, consider Condition 5. Suppose that̀ �w 6= b and a �w� 1 2 D ` �w . For simplicity,

denote

ˆ (
�
�M ` �w n D ` �w

�
� ;

�
�D ` �w n M ` �w

�
�) = ( r; s),

ˆ (
�
�M 00

` �w
n D ` �w

�
� ;

�
�D ` �w n M 00

` �w

�
�) = ( r 00; s00), and

ˆ (
�
�M 0

` �w
n D 0

` �w

�
� ;

�
�D 0

` �w
n M 0

` �w

�
�) = ( r 0; s0).

Condition 5 is clearly satis�ed if (r; s) = ( r 00; s00). Suppose that (r; s) 6= ( r 00; s00). Then

` �w 6= j t . By the construction of the chainCj



and

ŵ00+
�
ŵ(F (D̂ )) � ŵ0

�
�̂ ŵ00+

�
ŵ(F (D̂ ) + C) � ŵ0

�
;

where ŵ00is de�ned such that for eachk 2 f 1; : : : ; 2(jÎ j � 1)g, ŵ00
k = min

�
ŵk(F (D̂ 0) �

C); ŵk(F (D̂ 0))
	

. By Observation 1,

ŵ(F (D̂ )) � ŵ0 = ŵ(F (D̂ 0) � C) � ŵ00; and ŵ(F (D̂ ) + C) � ŵ0 = ŵ(F (D̂ 0)) � ŵ00:

Therefore,

ŵ(F (D̂ 0) � C) �̂ ŵ(F (D̂ 0)) ;

contradicting to the de�nition of F . Hence,F (D̂ ) and F (D̂ ) + C are welfare equivalent.

Then by Lemma 3 again, there is a cycle or a chainC0 from F (D̂ ) + C to F (D̂ 0). By

similar arguments as before, it can be shown that (F (D̂ ) + C) + C0 and F (D̂ ) + C are

welfare equivalent. Then (F (D̂ )+ C)+ C0 and F (D̂ ) are welfare equivalent. This process

can be continued in�nitely, which leads to a contradiction since each additional cycle or

chain addition generates a matching that is closer toF (D̂ 0).

A.3 Proof of Theorem 4
We �rst show that, given any optimal mechanism, if a patient's feasible schedule set

becomes weakly more favorable, then she cannot receive less blood. The proof of this part

uses the same techniques as those in the proof of Theorem 2. We explain how to modify

the previous arguments to prove it. First, we present the following condition regarding

di�erent feasible schedule correspondences, which is a counterpart of Assumption 20.

Assumption 2 00. Consider any two pro�les of feasible schedule correspondences,S and

S0. For every i 2 I and D i 2 D i , if Si (D i ) is weakly more favorable thanS0
i (D i ) at D i ,

then for any (r; s) 2 S i (D i ) and any (r 0; s0) 2 S 0
i (D i ), we have

1. If r 0 > r; s 0 > 0 and s <
�
�D i

�
� , then

(r + 1; s + 1) 2 S i (D i ) and (r 0 � 1; s0 � 1) 2 S 0
i (D i ):

2. If r 0 > r and s0 � s, then

(r + 1; s) 2 S i (D i ) and (r 0 � 1; s0) 2 S 0
i (D i ):

Using arguments similar to those in the proof of Lemma 1, it can be shown that when

Assumptions 1 and 2 are satis�ed for all feasible schedule correspondences, Assumption

200is satis�ed.

Second, we use the same construction of extended problems as before. For a given pro-

�le of feasible schedule correspondencesS = ( Si )> r; s



denote the outcome matching ofF



Lemma 6. Consider anyD 2 D and any patient i 2 I . Suppose thatS and S0 are two

pro�les of feasible schedule correspondences such thatSj (D j ) = S0
j (D j ) for all j 2 I n f ig,

and Si (D i ) is weakly more favorable thanS0
i (D i ) at D i . If M is a matching for D̂ under

S, M 0 is a matching for D̂ under S0, and
�
�M 0

i n D i

�
� >

�
�M i n D i

�
� , then there is a cycle or

a chain from M to M 0.

Using Assumptions 10 and 200, Lemma 6 can be proved in the same way as Lemma 3.

Since there is no concealed donor, Case 4.5 in the proof of Lemma 3 cannot happen.

By arguments similar to those in the proof of Lemma 4, Lemma 5 can be proved

using Lemma 6. Speci�cally, we prove by contradiction. Assume that there exist some

optimal rule F , D 2 D , i 2 I , S and S0, such that Sj (D j ) = S0
j (D j ) for all j 2 I n f ig,

Si (D i ) is weakly more favorable thanS0
i (D i ) at D i , and

�
�
�Fi

�
D̂ j S

�
n D i

�
�
� <

�
�
�Fi

�
D̂ j S0

�
n D i

�
�
� :

Then by Lemma 6, there is a cycle or a chainC from F
�
D̂ j S

�
to F

�
D̂ j S0

�
. It can be

shown that F
�
D̂ j S

�
+ C is welfare equivalent toF

�
D̂ j S

�
. By Lemma 6 again, there is a

cycle or a chainC0 from F
�
D̂ j S

�
+ C to F

�
D̂ j S0

�
. Then

�
F

�
D̂ j S

�
+ C

�
+ C0 is welfare

equivalent to F
�
D̂ j S

�



Supplemental Material

B The General Multi-unit Exchange Model

under Private Information
The main theoretical results in the paper are independent of the blood allocation

and transfusion practices, and our model can be used to study the general multi-unit

exchange of indivisible objects with compatibility-based preferences over the objects,

where for each agent both such preferences and her endowments are private information.

To this end, we �rst reinterpret several elements in the model.

We considerI as a set ofagents , and � i 2 B as the type of agent i 2 I . For every

i 2 I , eachD i 2 D i is a set ofobjects initially owned by agent i , i.e., the endowments

of i , and � d 2 B is the type of each objectd 2 D i . For every X 2 B, there are vX

existing objects of typeX that are not the endowments of any agent. We assume that



A mechanism f is strategy-proof if for any i 2 I , D; D 0 2 D , C and C0 such that

D 0
i � D i , D j = D 0

j , C(� j ) = C0(� j ) for all j 2 I n f ig, and f
�
D 0j C0

�
X

(i ) = 0 for every

X 2 C0(� i ) n C(� i ), we have

wi
�
f

�
D j C

��
R i wi

�
f

�
D 0j C0

��
:

Recall that, to incentivize an agent to report her full set of endowments, we require her

feasible schedule set to become more favorable as she reports a larger set of endowments

(Assumptions 3 and 4). Given that an agent may over-report or under-report her set of

compatible types, we do not allow her feasible schedule set to vary with her preferences.

That is, for each agenti , onceD i is given,Si (D i ) is �xed and does not depend onC(� i ).

Under the same assumptions on the feasible schedule correspondences as in Theorem

2, given an optimal mechanism, if an agent under-reports her endowment set and/or

misreports her preferences, then she either receives an incompatible object, or receives

weakly less compatible objects.

Theorem S.5. Under Assumptions 1, 2 and 3, every optimal mechanism is weakly

strategy-proof.

Under these assumptions, the exchange rates in this general model can be endoge-



compatible objects. This can be shown in the following two parts, because for an agenti

and her two sets of compatible typesC(� i ) and C0(� i ), we haveC0(� i ) =
�
C(� i ) nB1

�
[B 2,

whereB1 = C(� i ) n C0(� i ) and B2 = C0(� i ) n C(� i ).

1. If any agent over-reports her set of compatible types, then she either receives an

incompatible object, or receives weakly less compatible objects.

2. If any agent under-reports her set of compatible types, then she receives weakly less

compatible objects.



cycle fromM to M 0 is a directed graph of agents and objects in which each agent/object

points to the next object/agent, and is denoted as a listC = ( i 1; d1; : : : ; i �t ; d�t ), �t � 2,

such that for eacht 2 f 1; : : : ; �tg (let i �t+1 = i 1 and d0 = d�t ):

1. i t 2 Î , dt 2 M 0
i t

n M i t and dt 2 M i t +1 .

2. If i t 6= b, dt � 1 2 D i t , and dt =2 D i t , then

(
�
�M i t nD i t

�
�+1;

�
�D i t nM i t

�
�+1) 2 S i t (D i t ) and (

�
�M 0

i t
nD i t

�
� � 1;

�
�D i t nM 0

i t

�
� � 1) 2 S i t (D i t ):

3. If i t 6= b, dt � 1 =2 D i t , and dt 2 D i t , then

(
�
�M i t nD i t

�
� � 1;

�
�D i t nM i t

�
� � 1) 2 S i t (D i t ) and (

�
�M 0

i t
nD i t

�
�+1;

�
�D i t nM 0

i t

�
�+1) 2 S i t (D i t ):

4. If i t



Case 2.The procedure stops ati �t at Step �t � 1, i �t 6= i 1, and
�
�D i 1 n M 0

i 1

�
� �

�
�D i 1 n M i 1

�
� .

Then (i 1; d1; : : : ; d�t � 1; i �t ) is a chain fromM to M 0.

Case 3.The procedure stops ati �t at Step �t � 1, i �t 6= i 1, and
�
�D i 1 n M 0

i 1

�
� >

�
�D i 1 n M i 1

�
� .

In this case, (i 1; d1; : : : ; d�t � 1; i �t ) may not be a chain fromM to M 0. We use the pointing

procedure fromM 0 to M , which starts with j 1 = i 1 pointing to somec1 2 D i 1 such that

c1 2 M i 1 n M 0
i 1

. Then a cycle or a chain fromM to M 0 can be found.

Case 4.The procedure stops ati �t at Step �t � 1 and i �t = i 1.

Subcase 4.1.d�t � 1 2 D i 1 .

To see that (i 1; d1; : : : ; i �t � 1; d�t � 1) is a cycle fromM to M 0, we verify Condition 2 in

the de�nition of a cycle for i 1. Sinced�t � 1 2 D i 1 and d�t � 1 2 M i 1 ,
�
�D i 1 n M i 1

�
� <

�
�D i 1

�
� .

Then given that jM 0
i 1

n D i 1

�
� > jM i 1 n D i 1

�
� , by Assumption 2, there existss >

�
�D i 1 n M i 1

�
�

such that (jM 0
i 1

n D i 1

�
� ; s) 2 S i 1 (D i 1 ). It follows from Assumption 10 that

(
�
�M i 1 n D i 1

�
� + 1;

�
�D i 1 n M i 1

�
� + 1) 2 S i 1 (D i 1 ):

Similarly, d�t � 1 2 D i 1 and d�t � 1 =2 M 0
i 1

imply that
�
�D i 1 n M 0

i 1

�
� > 0. Then by Assumption

2, there existss0 <
�
�D i 1 n M 0

i 1

�
� such that (jM i 1 n D i 1

�
� ; s0) 2 S i 1 (D i 1 ). It follows from

Assumption 10 that

(
�
�M 0

i 1
n D i 1

�
� � 1;

�
�D i 1 n M 0

i 1

�
� � 1) 2 S i 1 (D i 1 ):

Subcase 4.2.d�t � 1 =2 D i 1 and � d�t � 1
2 Ĉ0(� i 1 ).

Then (i 1; d1; : : : ; i �t � 1; d�t � 1) is a cycle fromM to M 0.

Subcase 4.3.d�t � 1 =2 D i 1 and � d�t � 1
=2 Ĉ0(� i 1 ).

Then (i 1; d1; : : : ; i �t � 1; d�t � 1) is not a cycle fromjjand j

n M i �
:F50 11.9552 Tf J/F53 11.9552 Tf -1.39 4d [(),27 11.9552 Tf 3.985 43985 -rem2)-32446874and d�t �M 1 =2D i 1 d�t �1 =(D i



a �nite number of steps, someM k , k � 1, is constructed and a cycle or a chainC from

M k to M 0 is found. Using arguments similar to those in the proof of Lemma 3, it can be

shown that C is also a cycle or a chain fromM to M 0.

Finally, by arguments similar to those in the proof of Lemma 4, we can use Lemma

S.8 to show Lemma S.7. This concludes the proof of Theorem S.5.

C Weighted Maximal Mechanisms: Additional Re-

sults

C.1 Sequential Targeting Mechanisms are Weighted Maximal
Let I = f 1; 2; : : : ; jI jg be the set of patients. In this section, for the ease of matrix

operations we use a slightly more general de�nition of an allocation. For everyD 2 D ,

� 2 A (D) and i 2 I , � X (i ) is de�ned for every blood typeX 2 B by setting � X (i ) = 0

for all X 2 B n C(� i ).

Let f be a sequential targeting mechanism with respect to target setsf Nkg�k
k=1 and

target function � . Consider any problemD 2 D . For eachk 2 f 1; : : : ; �kg, we de�ne a

function Wk : A (D) ! Z such that for every� 2 A (D),

Wk(� ) =

8
><

>:

P

i 2 N k ;X 2B
� X (i ) if � (k) = max

�
P

d2[ i 2 N k D i

� (d) if � (k) = min
:

Let h 2 Z++ . De�ne a function W



if ` > k , we haveW(� ) > W (� 0) if

h
�k� k >

�kX

`= k+1

h
�k� ` �

� X

X 2B

vX +
X

i 2 I

max
D 0

i 2D i

jD 0
i j

�
:

This is equivalent to

1 >
�kX

`= k+1

hk� `
� X

X 2B

vX +
X

i 2 I

max
D 0

i 2D i

jD 0
i j

�
:

Therefore, after choosing su�ciently largeh such that

1 >
�kX

`=2

h1� `
� X

X 2B

vX +
X

i 2 I

max
D 0

i 2D i

jD 0
i j

�
; (1)

we have for anyk 2 f 1; : : : ; �kg and any �; � 0 2 A k� 1, Wk(� ) > W k(� 0) implies W(� ) >

W(� 0). Then, given that all the allocations in A �k are welfare equivalent, the sequential

targeting outcome f (D) 2 A �k is welfare equivalent to any solution to the following

maximization problem:

max
� 2A (D )

W(� )

Recall that each patient i 2 I �rst appears in a maximization target: for every

k 2 f 2; : : : ; �kg, if � (k) = min, then for any i 2 Nk there existsk0 < k such that i 2 Nk0

and � (k0) = max. This implies that for every i 2 I , W r (i ) � W s(i )jD i j for all D i 2 D i , as

h satis�es inequality (1). Therefore,f is a weighted maximal mechanism with respect to

the score function with the individual weightsW r (i ) and W s(i ). This shows the following



the following maximization problem

max
� 2A (D )

� � W

Suppose that Assumption 1 (L-convexity) holds. Given� 2 Za
+ , we show that the

constraint \ � is an allocation", i.e., � 2 A (D), is equivalent to a system of linear in-

equalities in four parts:

1. For every patient i 2 I , let

r i =
X

X 2B

� X (i ) and si =
X

d2 D i

� (d):

SinceSi (D i ) is L-convex, there exists some integer vectorbi 2 Z6 such that (r i ; si ) 2

Si (D i ) if and only if the following inequalities hold:

r i � si � bi; 1

� r i + si � bi; 2

r i � bi; 3

� r i � bi; 4

si � bi; 5

� si � bi; 6

We rewrite these linear inequalities in matrix form, after de�ning

A i =

0

B
B
B
B
B
B
B
B
B
B
@

1 � 1 1 � 1 0 0
...

...
...

...
...

...

1 � 1 1 � 1 0 0

� 1 1 0 0 1 � 1
...

...
...

...
...

...

� 1 1 0 0 1 � 1

1

C
C
C
C
C
C
C
C
C
C
A

8 i 2 I; (2)

Agr82e.173 Td [(C)]TJ 0 -7.1:[(C)]3d [(=)]TJ/F56 11.9552 Tf 12.426 59.896.65 l12 -7.174 Td [(C)]TJ 0 - -7.173 Td [(C)][(I)1 12.Tf 12.426 59.8C
..
..969J 25.115 7.97 Td [(.)]TJ 0 -3.985 Td [(.)]TJ 0 -3.985 Td [46



2. We rewrite the market clearing conditions,
X

i 2 I :X 2C(� i )

� X (i ) �
X

d2[ i 2 I D i :� d = X

� (d) � vX 8 X 2 B;

in matrix inequality form as

� � AB � v (4)

where

AB = ( AT
X )X 2B

de�ned by 8 X 2 B,

AX =
� �

AX (i; Y )
�

Y 2B
;
�
AX (d)

�
d2 D i

�

i 2 I

such that

AX (i; Y ) =

(
1 if Y = X and X 2 C(� i )

0 otherwise
8 i 2 I; 8 Y 2 B

and

AX (d) =

(
� 1 if � d = X

0 otherwise
8 d 2 [ i 2 I D i :

3. The following inequality states that a donor never exceeds 1 unit of donation:

� (d) � 1 8 d 2 [ i 2 I D i :

We rewrite this as

� � AD � bD = (1 ; : : : ; 1) (5)

where

AD =
�
AD (r; c)

�
r � a; c�[ i 2 I jD i j

such that AD (r; c) = 1 if both row r and column c refer to the same donord, and

AD (r; c) = 0 otherwise.

4. Finally, no patient receives incompatible blood:
X

i 2 I

X

X 2BnC(� i )

� X (i ) � 0;

which can be written as

� � AC � 0 (6)

where

AC =

 
� �

AC(i; X )
�

X 2B
;
�
AC(d)

�
d2 D i

�

i 2 I

! T

such that

AC(i; X ) =

(
1 if X 62 C(� i )

0 otherwise
8 i 2 I; 8 X 2 B
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and

AC(d) = 0 8 d 2 [ i 2 I D i :

Then the vector � 2 Za
+ is an allocation, i.e.,� 2 A (D), if and only if inequalities

(3), (4), (5), and (6) hold. This implies that the following integer linear program in

cannonical form �nds an allocation that is welfare equivalent tof (D):

max � � W (7)

subject to

� � A � b (8)

where

A = ( A I ; AB; AD ; AC) and b= ( bI ; v; bD ; 0)

such that � is a 1� a non-negative integer vector,A is an a � (6jI j + jBj + j [ i 2 I D i j + 1)

integer matrix with entries 0, 1 or � 1, and b is a 1� (6jI j + jBj + j [ i 2 I D i j + 1) integer

vector. We consider its linear program relaxation such that the search space isRa
+ instead

of Za
+ .

A matrix is totally unimodular if the determinant of every square submatrix is� 1; 0

or 1. The following result is well known and straightforward to prove using Cramer's rule

in linear algebra (for example, see Schrijver (1998)).

Lemma S.9. The vertices of the polyhedron de�ned by the inequality(8) are integer-

valued for any integer vectorb if and only if A is totally unimodular.

Thus, for any linearly independent basis for� the linear program relaxation of the

problem in (7) and (8) has only integer solutions for any integer vectorb if and only if

A is totally unimodular. The following lemma establishes a condition for checking the

total unimodularity of A:

Lemma S.10 (Ghouila-Houri (1962)). A is totally unimodular if and only if there exists

a partition of any subset of column indicesC � f 1; 2; : : : ; 6jI j + jBj + j [ i 2 I D i j + 1g as

K C and LC such that for the column vector� =
P

c2 K C
Ac �

P
c2 L C

Ac, whereAc is the

cth column vector ofA, we have� (r ) 2 f� 1; 0; 1g for every row r = 1; : : : ; a.

We prove that A is indeed totally unimodular using this result.

Lemma S.11. The matrix A is totally unimodular.

Proof of Lemma S.11. Let C � f 1; 2; : : : ; 6jI j + jBj + j [ i 2 I D i j + 1g be any subset

of column indices ofA. We construct a partition of C, K C and LC , as in Lemma S.10 in
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four steps. Below for eachx 2 f 1; 2; 3; 4g, � x denotes the di�erence vector between the

sum of the columns with indices inK C and the sum of the columns with indices inLC

at the end of the construction in Stepx.

1. We �rst consider the columns that correspond to the feasible schedule constraints.

Let i 2 I . List the column indices in the setf c 2 C : 6(i � 1) + 1 � c � 6ig as

c1; c2; : : : ; ck . We will inductively assign these indices to two sets,K i
C and L i

C , which

are both initialized to ; . Let the index of the �rst row regarding i in each column be

r = ( i � 1)jBj +
X

j<i

jD j j + 1;



ˆ If exactly one of � (1) and � (1) is 0 and exactly one of� (2) and � (2) is 0: Then

suppose� (m) and � (n) are nonzero form 6= n. If they have the same sign, then

assignc̀ to L i
C . If they have opposite signs, then assignc̀ to K i

C . Thus,

(� ` (r ); � ` (r 0)) = ( � x; x)

wherex 2 f� 1; 1g.

ˆ If � (1) and � (1) have the same sign, then assignc̀ to L i
C ; and if they have opposite

signs, then assignc̀ to K i
C . In the former case� (2) and �



On the other hand, for any rowr 0 regarding a donor,
kX

`=1

A(r 0; c̀ ) 2 f� 1; 0g:

Assign everyc̀ to LC . Then we have

� 2 = � 1 �
kX

`=1

Ac` ;

which is the di�erence vector between the sum of the columns with indices inK C and

the sum of the columns with indices inLC at the end of Step 2.

For the row r de�ned above we have� 2(r ) 2 f� 1; 0; 1g as � 1(r ) 2 f 0; 1g. For the row

r 0 de�ned above we have� 2(r 0) 2 f� 1; 0; 1g as � 1(r ) 2 f� 1; 0g.

3. For any c 2 C with 6jI j + jBj < c < 6jI j + jBj + j [ i 2 I D i j + 1, column c is in AD and

refers to some donor with a row numberr . Assignc to LC if � 2(r ) 2 f 0; 1g, and assign

it to K C otherwise. After all such column indices are assigned,� 3(r ) 2 f� 1; 0; 1g for

any row r regarding a donor, and� 3(r 0) = � 2(r 0) 2 f� 1; 0; 1g for any other row r 0.

4. The last column ofA is the vector AC and AC(r ) 2 f 0; 1g for every row r . Consider

any row r such that AC(r ) = 1. This refers to a patient i and a blood typeX such

that X 62 C(� i ). Then for any c 2 C assigned in Steps 2 and 3,A(r; c) = 0. Therefore,

� 3(r ) = � 1(r ) 2 f 0; 1g. If the index 6jI j + jBj + j [ i 2 I D i j +1 2 C, we assign it toLC so

that � 4(r ) 2 f� 1; 0g. For any row r 0such that AC(r 0) = 0, � 4(r 0) = � 3(r 0) 2 f� 1; 0; 1g.

Therefore, we have constructed a partition ofC, K C and LC , such that
P

c2 K C
Ac �

P
c2 L C

Ac = � 4 and � 4(r ) 2 f� 1; 0; 1g for every row r = 1; : : : ; a. By Lemma S.10,A is

totally unimodular.

These results are used to prove the following proposition.

Proposition 2. Under Assumption 1, the outcome of a weighted maximal mechanism

can be found in polynomial time.

Proof of Proposition 2. By Lemmata S.9 and S.11, under Assumption 1, all the

basic solutions to the linear program relaxation of the integer linear program in (7) with

constraint (8) are integer-valued. Thus, any polynomial LP method, such as the simplex

algorithm, �nds an allocation that is welfare equivalent tof (D) in polynomial time.

D Examples Regarding Violations of Assumptions
Example S.3 and Example S.4 below show that Assumption 1 and Assumption 2 are

needed for the donor monotonicity of the optimal mechanisms, respectively.

S.13



Example S.3 (Violation of Assumption 1). Suppose that the set of patients isI =

f 1; 2; 3; 4g. For every i 2 I , ni = 0. Each patient's blood type, maximum need and

donor set are given as follows.

ˆ � 1 = A, n1 = 2, and Patient 1 has two type B donors and four typeO donors.

ˆ � 2 = B, n2 = 2, and Patient 2 has four typeO donors.

ˆ � 3 = O, n3 = 4, and Patient 3 has one typeA donor and seven typeAB donors.

ˆ � 4 = A, n4 = 1, and Patient 4 has two type AB donors.

In addition, the blood bank only has one unit of typeA blood in its inventory. Assume

ABO-identical transfusion.

For every i 2 I and every possible donor setD i 2 D i ,

Si (D i ) =
n

(r; s) 2 W i : s = 2r and r � min
�

ni ;
� �
�D i

�
�=2

�	 o
:

Note that Assumptions 2 and 3 are satis�ed, while Assumption 1 is violated: if a patient

reports at least two donors, then her feasible schedule set is not L-convex.

Let f be a sequential targeting mechanism with respect to target setsf Nkg�k
k=1 and

target function � such that N1 = N2 = f 3g



ˆ � 3 = AB , and Patient 3 has one typeA donor and one typeO donor.

ˆ � 4 = O, and Patient 4 has one typeA donor.

In addition, the blood bank only has one unit of typeAB blood in its inventory. Assume

ABO-identical transfusion.

The exchange rate is one-for-one for everyi 2 I n f 1g. That is, for every reported

donor setD i 2 D i , wherei 2 I n f 1g,

Si (D i ) =

(
f (0; 0)g if D i = ;
�

(0; 0); (1; 1)
	

otherwise
:

On the other hand, Patient 1 can receive blood up to her maximum need by supplying

at most one unit: for everyD1 2 D 1,

S1(D1) =

(
f (0; 0)g if D1 = ;
�

(0; 0); (1; 0); (1; 1); (2; 0); (2; 1)
	

otherwise
:

This is a special case of the Delhi policy in Example 1. Note that Assumptions 1 and

3 are satis�ed. However, Assumption 2 is violated, since when Patient 1 reports two

donors, (2; 2) is not a feasible schedule.

Let f be a sequential targeting mechanism with respect to target setsf Nkg�k
k=1 and

target function � such that N1 = f 2g. Then f selects the following allocation when every

patient truthfully reports her donor set:

ˆ Each i 2 I receives one unit of type� i blood.70

ˆ Patient 1's type B donor donates, Patient 3's typeO donor donates, and the donor of

i 2 f 2; 4g donates.

If Patient 1 conceals her typeB donor, then



It can have preferences over di�erent remaining inventories and such preferences can

correspond to some explicit objectives, such as maximizing the amount of certain types

of blood in stock. To this end, we extend our model and include the blood bankb as an

agent. In an allocation� , we also specify the amount of typeX blood the bank receives,

� X (b), for each X 2 B. Denote a blood bundlethat the bank keeps in its inventory

as z = ( zX )X 2B 2 Z jBj
+ . Assume that the bank has a complete preference relation over

all the blood bundles. Then the de�nition of e�ciency can be modi�ed accordingly

to include the bank's welfare. A schedule pro�le is extended and denoted by a vector

w =
�
(r i ; si ) i 2 I ; (zX )X 2B

�
2 W � Z jBj

+ . The mechanism designer's preference relation

� over all such schedule pro�les is complete, transitive, antisymmetric, and responsive

to the basic schedule pro�les in the setf 0; 1g
2j I j + jBj

. Moreover, � is aligned with the

preferences of all the agents (all the patients and the bank): for every two schedule

pro�les w and w0, we havew � w0 if every agent weakly prefersw to w0, and at least one

agent strictly prefersw to w0.71 Then, the optimal mechanism induced by� is e�cient,

and it is straightforward to extend the proofs to show that Theorem 2 and Theorem 3

remain valid.

We give a simple and concrete example of an optimal mechanism in this more general



with every agent's preferences. In particular, the speci�cation of the target sets�Nk and
�N` ensures that it is aligned with the bank's preferences.72

E.2 Integrated Blood Component Markets
Although in practice replacement donor programs function for each blood component

separately, it is plausible that higher welfare gains can be achieved by integrating these

markets. For instance, a patient requesting red blood cells can have her donors donate

platelets to another patient, while the latter patient's donors donate red blood cells to the



the type of each patienti , � i , is extended to specify which component she needs. Hence,

BI =
�

(c; X ) : c 2 f rbc; plt; wbg and X 2 f O+ ; O� ; A+ ; A� ; B+ ; B � ; AB + ; AB �g
	

is the set of patient types. We assume that each donor can donate either one unit of

apheresis platelets, or one unit of whole blood, which can simply be used as a whole

blood transfusion pack, or to prepare one unit of red blood cells. Therefore, each donor

d can provide 1 unit of


