


In this paper, imposing a uniform upper bound in coalition sizes, we provide a
direct proof of nonemptiness of the core using Kakutani’s �xed point theorem
so that their important theorem is easily accessible to more application-oriented
researchers.

Moreover, this direct proof allows us to drop the comprehensiveness assump-
tion entirely for nonemptiness of the f-core. This generalization broadens the
applicability of our nonemptiness result of the f-core to a signi�cantly wider
class of problems such as matching problems in large markets: for example,
couples or more generally, preferences over colleagues in one-to-many matching
problems, hedonic games, and network formation problems when the size of each
component’s diameter is bounded above by a �nite number.2 Interestingly, in
these cases, the equal treatment (in payo�s) property for players of the same
type can be violated in every f-core allocation.

Our results are applicable to the models in the literature of matchings with
atomless players such as Legros and Newman (1996), Konishi (2013), Gersbach,
and Haller, and Konishi (2015), and Chade and Eeckhout (2020) as well as to
atomless versions of the standard matching and hedonic problems such as Alkan
(1986), Dutta and Masso (1997), Konishi, Quint, and Wako (2001), Banerjee,
Konishi, and Sonmez (2001), and Bogomolnaia and Jackson (2002). We also
discuss applications of our results to Scarf’s (1971) nonemptiness result for the
core of NTU games. We can also relate our results with the ones in Konishi,
Pan, and Simeonov (2023) that analyze a team competition problem in a large
market in the presence of moral hazard, showing the existence of a free-entry
equilibrium of a team formation game.

The rest of the paper is organized as follows. Section 2 introduces a simpli�ed
version of the Kaneko-Wooders model and assumptions. Section 3 presents an
atomless player version of a popular roommate example in a one-sided matching
problem, and discusses how the f-core looks like in this example. Section 4
proves our main theorems. Theorem 1 shows that with the comprehensiveness
condition, the equal-treatment f-core is nonempty. In contrast, our main result,
Theorem 2, proves the nonemptiness of f-core without comprehensiveness, but
there can be player types who are treated unequally in an f-core allocation.

2 The Model

There is a set of player types T , each of which has a continuum of atomless
players of measure ��t > 0 for each t ∈ T . Each coalition type 
 is described
by its membership pro�le, (mγ

t )t∈T , where mγ
t ∈ Z+ is the number of type t

players in coalition 
. Let the set of all admissible coalition types be �.
Let T γ = {t ∈ T : mγ

t > 0}. For each coalition type 




Our NTU model G is summarized by a list G = (T; �; (��t)t∈T ; (V γ)γ∈�). Let

�t ≡ {
 ∈ � : mγ
t′ = 0 ∀t′ ̸= t}, which is the set of coalition types that consists

of only type t players. For 
 ∈ �t, let uγ
t be the smallest upper bound such that

uγ
t ≥ ut for all ut ∈ V γ . For each t ∈ T , let ut ≡ maxγ∈�t uγ

t , this is the payo�
guaranteed for type t player in a core allocation (individual rationality). With-
out loss of generality, for all 
 ∈ �, we translate V γ so that the individually
rational payo� for type t is positive: i.e. ut > 0 for all t ∈ T .

(A1) T is a �nite set

(A2) V γ − RT γ

+ = V γ for all 
 ∈ � (Comprehensiveness)

(A3) V γ ∩ RT γ

+ is compact

(A4) Measure Consistency

(A5) There is K ∈ Z++ such that for all 
 ∈ �, 0 <
P

t∈T mγ
t ≤ K holds.

Assumptions (A1)-(A4) are employed in Kaneko and Wooders (1986). For
the last technical condition (A4), see Kaneko and Wooders (1986)4.

Our only simpli�cation assumption of this paper is (A5): Kaneko and Wood-
ers (1986) assume a weaker assumption, per capita boundedness. Note that (A1)



The equal-treatment f-core for G is a collection of all equal-treatment f-
core allocations. Clearly, an equal-treatment f-core allocation for G is an f-core
allocation for G as well.

The results of this paper are as follows:

Theorem 1. The equal-treatment f-core is nonempty under (A1), (A2), (A3),
(A4), and (A5).

Theorem 2. The f-core is nonempty under (A1), (A3), (A4), and (A5).

Theorem 3. The f-core and the equal-treatment f-core are equivalent under
(A1), (A2’), (A3), (A4), and (A5).

The di�erences between these theorems come from the assumptions around
(A2), \Comprehensiveness." Although the main theorem is Theorem 2, the
same type players might get di�erent payo�s in every f-core allocation. In
the following section, we present two simple educational examples, providing
detailed analyses.

3 Examples

Here, we present two examples to illustrate our results before we present formal
proofs. First, consider a continuum version of a roommate example in a hedonic
game (Banerjee et al. 2001).

Example 1. Let T = {1; 2; 3} and K = 2. There are only 6 feasible coalitions,
and players’ payo� vector in each coalition is determined uniquely (hedonic
game): (u1; u2) = (3; 2) for coalition {1; 2}



for all t = 1; 2; 3. There are coalitions {1; 2}, {2; 3}, and {3; 1} with mea-
sure 1

2 each, and each coalition o�ers (weakly suboptimal) payo� (2; 2) for its
members. Note that there is no strictly improving coalitional deviation. It is
because coalition {1; 2} improves type 1 player’s payo� from 2 to 3, while type 2
player’s payo� is unchanged. In our setting, there is no means to transfer utility
across players in the same coalition (unlike (A2’)), and thus there is no possible
deviations from weakly Pareto-inferior allocation. Symmetrically, there is no
possibility for any coalitional deviation to improve all players in the coalition.
This equal-treatment f-core allocation is shown in Figure 1.

Figure 1: The f-core allocations from Example 1 with and without comprehensiveness.

Now, suppose that (A2) is dropped. Then, the above payo� vector is no
longer feasible: (u1; u2) = (2; 2) =∈ V {1,2} = {(3; 2)}. Thus, there is no equal
treatment f-core allocation. However, there is a weakly Pareto-improving payo�
vector in the original hedonic game: (u1; u2) = (3; 2) ∈ V {1,2}. Since pay-
o� vector (u∗

1; u∗
2; u∗

3) = (2; 2; 2) cannot be blocked by any �nite coalitions,
(u1; u2) = (3; 2) cannot be blocked either. Thus, we have an f-core of the orig-

inal hedonic game: �
{1,2}
1 = �

{1,2}
2 = �

{2,3}
2 = �

{2,3}
3 = �

{3,1}
3 = �

{3,1}
1 = 1

2 ,

(u
{1,2}
1 ; u

{1,2}
2 ) = (3; 2), (u

{2,3}
2 ; u

{2,3}
3 ) = (3; 2), and (u

{3,1}
3 ; u

{3,1}
1 ) = (3; 2). In

this allocation, also shown in Figure 1, one half of each type players are getting
less payo� than the other half. Despite of this apparent unequal treatment,
there is no way for the worse-o� players to form a strictly improving coalitional
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points (i) (u1; u2) = (3; 2) and (ii) (u1; u2) = (2; 3) is an f-core allocation. In
this case, (A2) is satis�ed, but (A2’) is violated. If (A2’) is satis�ed, a type 2
player in (i) can approach to a type 1 player in (ii) o�ering a payo� u′

1 ∈ (2; 3).
Then, by (A2’), this type 2 player can obtain a payo� higher than 2.�

4 Proofs of the Theorems

The main theorem of this paper is Theorem 2, but we utilize Theorem 1 in order
to prove it. We will illustrate how the proof of Theorem 1 is constructed by us-
ing Example 1. Starting with the original hedonic game, we take comprehensive
covers of the original payo� vectors: �V {1,2} =

�
(u1; u2) ∈ R2 : u1 ≤ 3; u2 ≤ 2

	
,

�V {2,3} =
�

(u2; u3) ∈ R2 : u2 ≤ 3; u3 ≤ 2
	

, �V {3,1} =
�

(u3; u1) ∈ R2 : u3 ≤ 3; u1 ≤ 2
	

,

and �V {t} = {ut ∈ R : ut ≤ 1} for all t = 1; 2; 3. For each two person coalition, we
now take the weak Pareto e�cient set @ �V {t,t+1} =

�
(ut; ut+1) ∈ R2 : ut ∈ [0; 3]; ut+1 = 2

	
∪�

(ut; ut+1) ∈ R2 : ut = 3; ut+1 ∈ [0; 2]
	

for all t = 1; 2; 3. Let �t ≡ {{t; t − 1} ; {t; t + 1} ; {t}}
be the set of coalitions that type t 3]; ut



mation please consult Figure 2 below. Let the inverse function of fγ be uγ :
�γ → @ ~V γ . This continuous mapping can be interpreted that uγ(xγ) is a payo�
vector for each abstract policy xγ



uγ
t (xγ) = u∗

t for all t ∈ T . Thus, type t players get u∗
t almost everywhere. For

all 
 ∈ ~�, we have
νγ

t′
mγ

t′
=

νγ
t

mγ
t

for all t; t′ ∈ T γ



Figure 3: The comprehensive hull and its weak-Pareto frontier (Theorem 2).

Theorem 3. The f-core and the equal-treatment f-core are equivalent under
(A1), (A2’), (A3), (A4), and (A5).

Proof of Theorem 3. First note that under (A2’), in any coalition 
 ∈ � with
�γ

t > 0 for t ∈ T γ , two distinct allocations uγ and ~uγ cannot coexist in an f-core
allocation. Suppose not. Then there exist 
 ∈ � and uγ ; ~uγ ∈ V γ



holds for some 
 with �γ
t > 0 with a strict inequality for at least one t ∈ T ~γ .

The strict f-core for



(T; (V (S))S⊆T,S ̸=∅) is Scarf-balanced if every balanced subfamily B of 2T , it
follows that ∩S∈BV (S) ⊆ V (T ). Scarf’s theorem (1971) is as follows.

Corollary 2 (Scarf, 1971). Let (T; (V (S))S⊆T,S ̸=∅ be an NTU game. The
core of an NTU game (T; (V (S))S⊆T,S ̸=∅) is nonempty if

(B1) V (S) − RT
+ = V (S) for all S ⊆ T; S ̸= ∅ (Comprehensiveness)

(B2) V S ∩ RS
+ is compact for all S ⊆ T; S ̸= ∅

(B3) (T; (V (S))S⊆T,S ̸=∅) is Scarf-balanced.

Proof. Consider the following special case of our problem in order to connect
it with the standard NTU game: ��1 = ::: = ��T = 1, � ≡ {S ⊆ T : S ̸= ∅},
and mS

t = 1 for all t ∈ S ∈ 2T \{∅} = � (where T S ≡ S for all S ∈
�). This special case is an atomless player version of a standard T -person
NTU game (T; (V (S))S⊆T,S ̸=∅). By Theorem 1, we have an f-core allocation�
(�S

t )t∈S,S∈�; (u∗
t )t∈T

�
. Since (�S

t )t∈S,S∈� is a feasible assignment,
P

S⊆T,S ̸=∅ �S
t =

1 for all t ∈ T and �S
t = �S

r for all t; r ∈ S. Let �S = �S
t for t ∈ S ⊆ T .

This implies that B ≡
�

S ⊆ T : �S > 0
	

is a balanced family and
�

�S : S ∈ B
	

is an associated balanced coe�cients. Since (u∗
t )t∈S ∈ V (S) for any S ∈ B,

(u∗
t )t∈T ∈ ∩S∈BV (S) holds. By Scarf-balancedness, (u∗

t )t∈T ∈ V (T ). By the
de�nition of an f-core allocation, there is no S ∈ � and (u′

t)t∈T S ∈ V S such that
u′

t > u∗
t for all t ∈ T S . Hence, if an NTU game is Scarf-balanced, there is a core

allocation (u∗
t )t∈T ∈ V (T ).�

5.4 Competing Teams and Contracts

Alchian and Demsetz (1972) considered a team production problem in the pres-
ence of moral hazard in a partial equilibrium model, and Holmstrom (1982)
showed that an e�cient allocation is achievable depending on the class of con-
tracts available for teams. We can illustrate how a team formation problem in
a competitive environment can be incorporated in our framework to analyze an
equilibrium team structure with optimal contracts, allowing for limited freedom
for teams to choose their contracts. Let V γ be a collection of all implementable
payo� vectors for all available contracts for team-type 
. If the set V γ is a
compact set for all 
 ∈ �, Theorem 2 shows that there is an f-core allocation.6

That is, the f-core allocation is an allocation in which each team-type 
 uses
a contract, such that there is no feasible contract that can improve all mem-
bers’ payo�s. That is, an f-core allocation is an equilibrium competing contract
structure|a list of team contracts that cannot be shaken by any other contracts
by entrants with new contracts (Konishi, Pan, and Simeonov 2023). In addi-
tion, we can allow for wide-spread externalities due to market price changes|if

6Moral hazard problems may not necessarily have binding individual rationality constraints
due to limited liability by the agent, and the comprehensiveness assumption could be violated.
In such a case, an f-core allocation may not satisfy the equal-treatment property
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market price changes, the set of achievable payo�s V γ can change as well. Ham-
mond, Kaneko, and Wooders (1989) and Kaneko and Wooders (1989) introduced
widespread externalities to Kaneko and Wooders model (1986), and showed that
the f-core is nonempty using the property that atomless coalitions’ deviations
do not a�ect the whole economy (in contrast, the Aumann core can be empty
under widespread externalities due to the atomic impact of a large (positive-
measure) coalition’s deviation). Our �xed-point-based proof strategy turns out
to be useful even under widespread externalities as is shown in Konishi, Pan,
and Simeonov (2023).
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