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Abstract

We consider a one-to-one assortative matching problem in which matched pairs compete

for a prize. With such externalities, the standard solution concept, pairwise stable matching,

may not exist. In this paper, we consider farsighted agents and analyze the largest consistent

set (LCS) of Chwe (1994). Despite the assortative structure of the problem, LCS tend to be

large with the standard e¤ectiveness functions: LCS can be the set of all matchings, including

an empty matching with no matched pair. By modifying the e¤ectiveness function motivated

by Knuth (1976), LCS becomes a singleton of the positive assortative matching. Our results

suggest that the choice of e¤ectiveness function can signiÖcantly impact the solution in a

matching problem with externalities.
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1 Introduction

There is a large literature on two-sided matching problems after a celebrated paper by Gale and

Shapley (1962). The structures and the properties of its central solution concept, pairwise stable

matching, have been investigated extensively. At the same time, relatively little attention has been

paid to matching problems with externalities, despite their ubiquity in many matching markets

in the real world. For instance, matched pairs compete after a matching is formed. In this case,



Consider the following example. Suppose that there are three male and three female skaters with

high, medium, and low ability. It is natural to predict a positive assortative matching as an

outcome of this example. Is it pairwise stable under the above e¤ectiveness function? Consider

a deviation by the high ability male and the medium ability female skaters from the assortative

matching. Then, according to the e¤ectiveness function, their former partners, the high ability

female and the medium ability male, cannot participate in the pairs competition, since they become

singles. This means that there are only two pairs in the competition, and the deviating pair gets a

high winning probability against the low ability pair. Thus, in the presence of externalities, there

may not be a pairwise stable matching under the standard e¤ectiveness function.

When the high ability male and the medium ability female agents deviate, they do not expect

any reaction from their former partners. Since single agents cannot participate in the pairs contest,

it is beneÖcial to match with any available partner. Given the two singles dumped by their partners

are available to form a pair, it is probably not reasonable for the deviating pair to expect their

deviation to decrease the number of pairs. Thus, it is natural to investigate whether or not agentsí
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stable set is a singleton set of a stable matching under coalitional and pairwise e¤ectiveness func-

tions, respectively. Kimya (2021) showed that the largest maximal farsighted set in the spirit

of Dutta and Vartiainen (2020) coincides with LCS by Chwe (1994) in this domain with coali-

tional deviations.6 We consider farsighted agents in the pairs competition model with externalities

in this paper, and show that the choice of e¤ectiveness function matters, providing an example

where LCS, under the standard e¤ectiveness function, is the set of all matchings, including a fully

unmatched matching.

Third, our paper belongs to the literature of assortative matching. Becker (1973) introduced

the assortative model of marriages. Banerjee, Konishi, and Sönmez (2001) extended Beckerís

assortative matching problem to hedonic coalition formation problems without externalities by

deÖning a top coalition property. This property guarantees the existence and uniqueness of the

core.7 Diamantoudi and Xue (2003) proved that under the top coalition property, LCS coincides

with a singleton core under the standard e¤ectiveness function in coalition formation problems.

Mauleon, Vannetelbosch, and Vergote (2011) derived the same result in the context of one-to-one

matching. Although our model has the same assortative structure, the results are quite di¤erent

with externalities.

2 The Model

We Örst deÖne our one-to-one matching problem with externalities, and introduce basic termi-

nologies in the next subsection, then we move on to introduce (Ögure skating) pairs competition

problem.

6Dutta and Vartiainen (2020) introduced history dependence to the rational expectations farsighted stability in

Dutta and Vohra (2017) to assure nonemptiness of solutions for all Önite problems.
7See Bogomolnaia and Jackson (2002) and Leo et al. (2021) as well.
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2.1 One-to-One Matching Problems with Externalities

Let M = fm1; :::; mng and W = fw1; :::; wng be the sets of male and female agents with jM j =

jW j = n. Let � : M [ W ! M [ W be a one-to-one matching: �(�(x)) = x for all x 2 M [ W

such that if �(m) 6= m then �(m) 2 W , and if �(w) 6= w then �(w) 2 M . The set of all matchings

is denoted by M. Each agent x 2 M [ W has a complete, transitive, and reáexive preference

relation Rx which is a binary relation over M. Let the associated strict preference relation be

�Px�0 (�Rx�0 and :�0Rx�), and associated indi¤erence relationship be �Ix�0 (�Rx�0 and �0Rx�).

A matching � is fully matched if �(x) 6= x for all x 2 M [ W . Denote a set of all fully matched

matchings by MF . A matching � is a fully unmatched matching if �(x) = x for all x 2 M [ W .

We deÖne an e¤ectiveness function which describes the resulting matching induced by a devia-

tion from the original matching. The following e¤ectiveness function is standard in the literature

of matching theory and coalition formation (Roth and Vande Vate, 1990; Diamantoudi and Xue,

2003; Herings, Mauleon, and Vannetelboch, 2020).

DeÖnition 1. A matching �0 is induced from � by a pair (m; w) 2 M � W , denoted by

� !(m;w) �0, if it holds

(i) �(m) 6= w and �0(m) = w;

(ii) �(m) 6= m ) �0(�(m)) = �(m) and �(w) 6= w ) �0(�(w)) = �(w);

(iii) for all x 2 M [ W n fm; w; �(m); �(w)g, �(x) = �0(x):

In words, the e¤ectiveness function states that when a pair of agents deviates from a matching,

the resulting matching is identical to the original matching except that (1) deviators are matched,

and (2) their previous partners are single. Similarly, we can deÖne the e¤ectiveness function for a

deviation by an agent.
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DeÖnition 2. A matching �0 is induced from � by an agent x 2 M [W , denoted by � !fxg �0,

if it holds

(i) �(x) 6= x and �0(x) = x;



pair iís winning probability �i is given by

�i =
YiPn

k=1 Yk

: (1)

The e¤ort cost function is common and linear for every agent x: cx(ex) = ex. Therefore, the

expected payo¤s of agent x in pair i is

Ux = �i � ex + �a�(x);

where a�(x) is agent xís payo¤ from the partnerís ability, and � > 0 is su¢ ciently small. This � is

introduced to break ties when there is only one pair in the competition: agent x in the pair prefers

a high ability partner even though he/she wins with probability one without making e¤ort. Thus,

in the pairs competition problem, for every agent x, preference Px satisÖes

(i) for all



� n(�) � jN(�)j is the number of matched pairs under �;

� Ai(�) �
�

a
�

1��
mi + a

�
1��

�(mi)

� 1��
�

is the productivity of pair i 2 N(�).

Pair iís equilibrium winning probability is calculated as10

�i = 1 �
(n(�) � 1) 1

Ai(�)Pn
j=1

1
Aj(�)

:

Member x of pair iís equilibrium payo¤ under � when �(x) 6= x can be explicitly solved as 11

Ux =

"
1 �

(n(�) � 1) 1
Ai(�)P

j2N(�)
1

Aj(�)

#
| {z }

winning probability

"
1 �

(n(�) � 1) 1
Ai(�)P

j2N(�)
1

Aj(�)

�
ax

Ai(�)

�#
| {z } +�a�(x)

net beneÖts by taking e¤ort dis utility into account

:

Since agent x cannot control ax, we can write Ux as:

Ux = Vx(Ai(�); E(�)) + �a�(x);

where E(�) is an aggregated externalities index under �

E(�) �
P

j2N(�)
1

Aj(�)

n(�) � 1
:

Note that when agent x gets a higher ability partner, payo¤ Ux increases due to increases in

both Ai(�) and E(�).

It is important to mention two properties of the aggregated externality index E(�). First,

E(�) tends to decrease in the number of matched pair n(�). This is because assuming that is the

average value of 1
Aj(�)

, 1
n(�)

P
j2N(�)

1
Aj(�)

, stays constant, n(�)
n(�)�1

decreases as n(�) goes up. This

externality causes an important di¤erence between the standard matching problem and the one

without externalities. The following example mentioned in the introduction illustrates that.

10For the detailed derivations, see Imamura, Konishi, and Pan (2021); Konishi, Pan, and Simeonov (2021).
11We can show that if

Pn
j=1

1
Aj(�) > (n(�) � 1) 1

Ai(�) for all i = 1; :::; n, then every pair gets a positive winning

probability, see Imamura, Konishi, Pan (2021); Konishi, Pan, and Simeonov (2021) for the details. This condition

is satisÖed for any � 2 M if
Pn

j=1
1



Example 1. (Imamura, Konishi, and Pan, 2021) Consider a pairs competition problem with M =

fm1; m2; m3g and W = fw1; w2; w3g. Let am1 = aw1 = 1, am2 = aw2 = 0:9, and am3 = aw3 = 0:7.

Set � = 1
2
, then we have Yi = (a

1
2
mie

1
2
mi + a

1
2

�(mi)
e

1
2

�(mi)
)2 and Ai = ami

+ a�(mi). For simplicity set

� = 0.12 We calculate m1ís payo¤s under the positive assortative matching �� and matching �0

with �� !fm1;w2g �0.

(i) �� = f(m1; w1); (m2; w2); (m3; w3)g:

Um1(��) =

�
1 �

2 � 1
2

1
2

+ 1
1:8

+ 1
1:4

� �
1 �

2 � 1
2

1
2

+ 1
1:8

+ 1
1:4

� 1

2

�
= 0:312 09

(ii) �0 = f(m1; w2); (m3; w3)g:

Um1(�0) =

�
1 �

1
1:9

1
1:9

+ 1
1:4

� �
1 �

1
1:9

1
1:9

+ 1
1:4

� 1

1:9

�
= 0:447 20

Thus, m1 is better o¤ by dumping his superior partner for an inferior partner. For any

other fully matched matching � 2 MF , a similar deviation blocks �. In addition, for any

matching �



Lemma 1. (Imamura, Konishi, and Pan, 2021) Let �, m`; mk 2 M with ` < k (thus am`
> amk

),

and �(m`); �(mk) 2 W with a(�(m`)) < a(�(mk)). Let �0 be such that �0(m`) = �(mk) and

�0(mk) = �(m`) with �0(x) = �(x) for all other x by swapping the partners among these two pairs.

Then, E(�0) > E(�) holds.

One important implication of Lemma 1 is that higher ability agents m` and �(mk) are better

o¤ by the above assortative swapping, since the abilities of their partners improve. We use these

properties to analyze LCS in the next section.

3 The Results

3.1 LCS under the Standard E¤ectiveness Function

In this section, we consider farsighted agents and analyze the largest consistent set (LCS) intro-

duced by Chwe (1994). We begin by providing a few concepts to deÖne LCS.

DeÖnition 3. A matching � is indirectly dominated by �0 if there is a Önite sequence of distinct

matchings �0; :::; �L with �0 = � and �L = �0 such that for every l 2 f0; :::; L � 1g; �l !S �l+1

holds for some S 2 M [ W [ M � W such that �LPx�l for x 2 S. We denote this indirect

domination by � � �0.

DeÖnition 4. A set of matchings CS(M) � M is consistent if for all � 2 CS(M), all �0 induced

by deviation � !S �0 for some S 2 M [ W [ M � W , there exist ~� 2 CS(M) such that �0 � ~�,

and x 2 S with :~�Px�.

DeÖnition 5. A set of matchings LCS(M) � M is the largest consistent set if it is consistent

and contains all consistent set C(M) � LCS(M).

Denote the positive assortative matching by ��, where ��(mk) = wk for all k = 1; :::; n. In

pairs competition problems, �� satisÖes the following property.
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Lemma 2. (1) For all � 2 MF with � 6= ��, ��Pm1� and ��Pw1� hold, and (2) for all k =

2; :::; n � 1, and all � 2 MF such that (i) �(mj) = wj for all j = 1; :::; k � 1, and (ii) �(mk) 6= wk,

if � 6= �� then ��Pmk
� and ��Pwk

� hold.

Proof. Suppose that � 2 MF and � 6= ��. Then, there is k such that �(mk) 6= wk. Let

the smallest of such k, and name it k. Then, �(mj) = wj holds for all j = 1; :::; k � 1, and

a�(mk) < awk
and a�(wk) < amk

. Consider a deviation by assortative swapping � �(mk;wk) �0. Since

� 2 MF , �0 2 MF holds. By Lemma 1, we have �0Pmk
� and �0Pwk

�, and �0Pmj
� and �0Pwj

�

for all j = 1; :::; k � 1. Now, suppose that �0 6= ��. By the same argument, there is the smallest

` > k with �(m`) 6= w`. Consider assortative swapping �0 �(m`;w`) �00, then we have �00Pmk
�0 and

�00Pwk
�0 by Lemma 1. Repeating this argument, we have ��Pmk

� and ��Pwk
�



Due to the assortative structure, one might think that LCS is a singleton of the assortative

matching f��g. However, the other direction of inclusion relationship does not hold in the model

with externalities: LCS includes not only ��, but also many other matchings. Perhaps surprisingly,

LCS in Example 1 coincides with the set of all matchings M, including the empty matching.

Proposition 2. In Example 1, LCS(M) = M.

To prove the above statement, we introduce some notations. Let the sets of matchings

with three, two, one, and zero pairs be M3 = f� 2 M : jfx 2 M [ W : �(x) = xgj = 0g, M2 =

f� 2 M : jfx 2 M [ W : �(x) = xgj = 2g f � 2 M : jfx 2 M [ W : �(x) = xgj = 2 g



ability: i.e., for x with �(x) 6= x, Ux(�) = 1 if �(x) = m1 or �(x) = w1, Ux = 1 � � if �(x) = m2

or �(x) = w2, and Ux = 1 � 2� if �(x) = m3 or �(x) = w3, where � > 0 is arbitrarily close to

zero. This construction of payo¤s of single pair matchings guarantees that for all � 2 M1, all

�0 2 M3 [ M2, and all x with �(x) 6= x and �0(x) 6= x, �Px�0 holds.

In this particular example, we can also show through direct calculation that for all � 2 M2,

all �0 2 M3, and all x with �(x) 6= x (and �0(x) 6= x), �Px�0 holds. The calculations show that

Um1(�1) < Um1(�2) holds even though �1 is the most preferable matching in M3 for m1 and �2 is

the least preferable in M2 for m1. We write down this property formally.

Strong Negative Externalities in Size (SNES). Suppose that (i) � 2 M1 and �0 2 M2 [M3,

or (ii) � 2 M2 and �0 2 M3. If for all x 2 M [ W with �(x) 6= x and �0(x) 6= x, �Px�0 holds.

With SNES, we can show the following claim.

Claim. In Example 1, M1 [ M2 [ M3 is consistent.

Proof.



�0 2 M1, then there is �00 2 M2 with �0 � �00 by matching a pair excluding the original deviator.

Clearly, the original deviator does not beneÖt. If a deviation pair creates �0 2 M2, then there

is �00 2 M3 with �0 � �00 by matching two single agents. By SNES, the original deviation is

not proÖtable. If a deviation (m; w) creates �0 2 M3 by matching two single agents, then w can

deviate with m0



3.2 LCS under the Knuth E¤ectiveness Function

We consider the e¤ectiveness function introduced by Knuth (1976) in this section. In our problem,

unmatched agents get the lowest payo¤ of zero, since he/she cannot participate in the contest.



Diamantoudi and Xue (2003) showed that if a hedonic game satisÖes the top-coalition property,

then LCS is the singleton core, which is the assortative matching in the one-to-one matching

problem without externalities. Does the same result hold in our problem under the e¤ectiveness

function with swapping? The following proposition shows that the answer is a¢ rmative.

Proposition 3. In the pairs competition problem, LCS under e¤ectiveness function �S only

includes ��:i.e., LCS�(M) = f��g.

Proof. First notice LCS�(M) � MF . If � has unmatched singles, any unmatched pair (m; w)

can deviate from � to obtain positive payo¤s. Since both m and w will have partners under

e¤ectiveness function�S, after the deviation they retain positive payo¤s, regardless of subsequent

deviations. Since m and w obtain zero payo¤s from matching �, they certainly deviate from �.

Thus, � =2 LCS�(M), and we conclude LCS�(M) � MF .

Now, we will prove LCS�(M) = f��g. First, we prove the following claim.

Claim. For all � 2 LCS�(M), we have �(m1) = w1.

Proof of Claim. Consider a set of full matchings in which m1 and w1 are not matched: MF
:1 �

f� 2 MF : �(m1) 6= w1g. This is a Önite set, and the elements of MF
:1, �1; :::; �K can be ordered



By the same argument, we conclude MF
:2 \ LCS�(MF ) = ;. So, we move on to MF

:3 � f� 2

MF : �(m1) = w1; �(m2) = w2 and �(m3) 6= w3g, and so on. This proves that only �� remains in

LCS�(M). We completed the proof.�

4 Concluding Remarks

In this paper, we analyzed farsighted agents in a one-to-one matching problem with externalities

and the assortative structure. In the matching problem without externalities of Becker (1973), the

assortative matching is a quite robust prediction irrespective of pairwise or coalitional deviations

and the choice of e¤ectiveness function. However, with externalities, we showed that the choice



solution concept for farsighted agents. The farsighted stable setó vNM stable set deÖned by

indirect dominationó have been extensively investigated in the recent literature. It is easy to see

that the singleton set of the assortative matching f��g is a farsighted stable set in our problem since

�� indirectly dominates any other matchings. The question is whether or not this is the unique

farsighted stable set in the pairs competition problem. Harsanyiís (1974) indirect domination

requires every coalition participating in the chain reaction of proposals and counter-proposals to
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