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Abstract

In this paper, we propose a model for futures returns that has the potential to
provide both individual investors and Orms who have positions in Onancial and energy
commodity futures a valid tail risk management tool. In doing so, we also aim to
explore the commonalities between these markets and the degree of Onancialization of
energy commodities. While empirical studies in energy markets embed either leverage
or jumps in the futures return dynamics, we show that the introduction of both features
improves the ability to forecast volatility as an indicator for risk for both the S&P500
and natural gas futures markets. Unlike most of the existing studies in energy derivative
markets based on daily data, our empirical analysis makes use of high-frequency (tick-
by-tick) data from the futures markets, aggregated to 10-minute intervals during the
trading day. The intraday variation is then utilized to generate daily time series of
prices, returns and realized variance. Our analysis shows that overall, the introduction
of both leverage and jumps in the SVJL model provides the best forecast for risk in both
a VaR and a CVaR sense for investors who have any position in natural gas futures
regardless of their degree of risk aversion. In the S&P500 market, the SVJL model
provides the most precise forecast of risk in a CVaR sense for risk-averse investors with
any position in futures, regardless of their degree of risk aversion.

Focusing on a OrmE internal risk management, the introduction of both jumps and
leverage in the SVJL model would beneCt speculative Orms who are short natural gas
futures aiming at minimizing tail risk in a VaR sense, as well as speculative Orms who
are long S&P500 futures and use either VaR or CVaR as Onancial risk management
criteria while wanting to minimize the opportunity cost of capital.
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1 Introduction

In this paper, we propose a model for futures returns that has the potential to provide
both individual investors and Orms who have positions in Onancial and energy commodity

futures a valid tail risk management tool. In doing so, we also aim to explore the com-



2 Literature review

Traditionally, the term leverage ecect indicates the negative correlation between asset re-
turns and changes in their volatility (see Ait-Sahalia et al.(2013) for an extensive literature
review). The interpretation of this ecect is intuitive if events that have a negative impact
on Onancial markets would eventually cause an increase in their volatility.

As mentioned by Kristoufek (2014), the original interpretation of the leverage ecect
was based on Black (1976) who related decreasing expected earnings of the company to a
decrease of the market value of the company which drives up the leverage ratio between

debt and equity. The negative relationship between returns and volatility was therefore



more e¢ ciently than GARCH models. At the same time, they Ond a signiOcant negative
leverage ecect in crude oil spot markets. Kristoufek (2014) focuses on the leverage ecect
in commodity futures markets and provides an extensive literature review in this area.

As a measure of market risk, VaR has been widely developed since its introduction
in RiskMetrics by JP Morgan in 1994. It is deOned as the maximum potential loss of an
underlying asset at a speciOc probability level over a certain horizon. Despite its popularity,
an obvious and distinctive limitation of the VaR approach is that it only speciCes the
maximum one can lose at a given risk level, but provides no indication for how much more
than VaR one can lose if extreme tail events happen. A good alternative is conditional
Value-at-Risk (CVaR), which is a coherent risk measure and retains the beneCts of VaR in
terms of the capability to deOne quantiles of the loss distribution.

Fan et al. (2008) estimate VaR for crude oil prices using a GED-GARCH approach
with daily WTI and Brent prices from 1987 to 2006. They Ond that this type of model

speciCcation does as well as the standard normal distribution at a 95% conOdence level.



between inventories and prices: the smaller the inventories available for that speciOc natural
gas, the higher its price volatility (see also Deaton and Leroque, 1992).

Schwartz (1997), Schwartz and Smith (2000), and Casassus and Collin-Dufresne (2005)
propose multi-factor models for energy prices where returns are only acected by Gaussian
shocks, but they constrain volatility to be constant. Pindyck (2004) examines the volatility
of energy spot and futures prices, estimating the standard deviation of their Orst dicerences.

Mason and Wilmot (2014) investigate the potential presence of jumps in two key daily
natural gas prices: the spot price at the Henry Hub in the US, and the spot price for
natural gas at the National Balancing Point in the UK. They Ond compelling empirical
evidence for the importance of jumps in both markets, though jumps appear to be more
important in the UK. They Ot the data using a GARCH(1,1) jump dicusion process where
volatility is time-varying and show that the best Ot for natural gas futures is a model with
both stochastic volatility and leverage.

We contribute to the current debate by testing for the existence of the leverage ecect
and the presence of jumps in the context of a near-continuous observation of the processes
with the ability to study their volatility in great detail by using high frequency futures
returns in the S&P500, natural gas and crude oil markets and by studying the impact of
the leverage ecect on measures of risk such as VarR and CVaR.

In terms of tail risk management, in the crude oil spot market, it has been shown
(see Chen, Zerilli and Baum (2019)) that the introduction of the leverage ezect in the

traditional stochastic volatility (SV) model with normally distributed errors is capable of



markets considered. Compared to Chen, Zerilli and Baum (2018) which presented evidence

for leverage in the crude oil spot market using daily data by estimating the SV models using



Henry Hub Natural Gas (NG) futures, traded on the CME Groups NYMEX exchange,
allow market participants signiOcant hedging activity to manage risk in the highly volatile
natural gas price, which is driven by weather-related demand. According to the exchange,
the NG contract is the third-largest physical commodity futures contract in the world by
volume.

The futures price is widely used as a national benchmark price for natural gas, which
continues to grow as a global and U.S. energy source. Natural gas futures trade in units
of 10,000 million British thermal units (mmBtu), which is approximately 10,000,000 cubic
feet of gas. Futures prices are quoted in US dollars and cents, with a minimum price
increment of $0.001 per mmBtu. At present, 118 consecutive monthsi contracts may be
traded.

Light, sweet crude oil (West Texas Intermediate) began futures trading on the New
York Mercantile Exchange (NYMEX) in 1983 and is the most heavily traded commodity
future. Crude oil futures trade in units of 1,000 U.S. barrels (42,000 gallons), with contracts
dated for 30 consecutive months plus long-dated futures initially listed 36, 48, 60, 72, and
84 months prior to delivery. Additionally, trading can be executed at an average dicerential
to the previous dayE settlement prices for periods of two to 30 consecutive months in a

single transaction. Crude Oil Futures (CL) are quoted in dollars and cents per barrel.

3.1 Descriptive statistics

In this section we provide a detailed empirical characterization of futures returns and their
variance. More speciOcally, we are interested in considering whether the data are normally
distributed, behave in a white noise fashion and have a unit root.

Table 1 provides descriptive statistics for the futures contract returns and their realized
variance. Both series exhibit excess kurtosis, while the realized variance series have large
skewness coe¢ cients. The Kolmogorovitmirnov test (Table 2) for normality rejects its null
for both series, while the Shapirofrancia test for normality concurs with those judgements.

The BoxfPierce portmanteau (or Q) test for white noise rejects its null for all the series



with exception of the natural gas futures returns. Using the Augmented DickeyfFuller and
Phillips-Perron tests, the null hypothesis of a unit root is rejected for all the futures daily

returns and corresponding realized variances.
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4 Estimation method

Following Bollerslev and Zhou (2002), who use continuously observed futures prices, we
build a conditional moment estimator for stochastic volatility models based on matching the
sample moments of Realized Variance with population moments of the Integrated Variance
(see Appendix | for details). In this paper, realized variance is computed as the sum of
high-frequency (10-minute interval) intraday squared returns. The returns on futures at

time t over the interval [t K;t] can be decomposed as

r(tk) =InkF¢
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As there are twelve moment conditions (for details see Appendix I11) and Ove estimated



We Ond that stochastic volatility models with leverage are ecective in Otting the volatil-
ity of futures returns for all the three markets. More speciOcally, we Ond signiOcant evidence
of a leverage erect for S&P500 and crude oil markets: a negative shock to returns increases
volatility in these markets. In contrast, we Ond evidence of inverse leverage ecect for the

natural gas market (in line with Kristoufek (2014)).

4.4 Stochastic Volatility model (SV)

This is a special case of the general model where there are no jumps and no leverage
( =0; x=0and =0).
In this case, these are the two main moment conditions, augmented using four lagged

counterparts (see Appendices | and 111 for details):

€1
€2

As there are six moment conditions and three estimated parameters, there are three
overidentifying restrictions that may be used to evaluate the model for each market. The
Hansen® J statistic indicates that the overidentifying restrictions are valid. As shown in
Tables 3 and 4 the three estimated parameters of the model are very precisely estimated

(except for the WTI dataset) and take on sensible values from an analytical perspective.

%In order to implement this estimation, we deOne the moment conditions and build speciCc t-tests on
the moment conditions.
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Table 3: GMM estimates for the SV, SVJ, SVL, SVJL models for the S&P500
futures: 09/20017fD6/2016

SV SVJ SVL SVJL
1:507*** 0:0869*** 0:0424*** 0:227***
(5:87) (4:58) (2:92) (29:99)
0:00398*** 0:00994*** 0:00649*** 0:00376***
(8:41) (12:56) (5:55) (15:69)
0:283*** 0:338*** 0:249*** 0:12015172***
(6:55) (19:62) (17:96) ( 54:75)
0:979 0:156923006***
(0:38) ( 10:09)
0:0159 0:038120618***
X 0:77) ( 30:60)
0:379*** 0:490***
( 11:29) ( 29:11)
N 3708

t statistics in parentheses
*p < 0:10;** p < 0:05;***p < 0:01

Table 4: GMM estimates for the SV, SVJ, SVL, SVVJL models for Natural Gas
futures: 09/20017D6/2016

SV SVJ SVL SVJL

0:923** 0:772*** 0:760*** 0:0556*

(2:19) (4:11) (3:45) (1:75)
0:0483*** 0:0568*** 0:0460*** 0:0545***

(4:36) (6:15) (5:60) (4:97)
1:139** 1:041%** 0:925*** 0:24293***

(2:33) (6:23) (3:49) ( 3:82)
0:0101*** 0:04345**

(4:03) ( 18:52)

0:932*** 0:97814

x (32:63) ( 0:53)
0:201*** 0:0495**

(4:57) (2:14)

N 3708

t statistics in parentheses
*p < 0:10;** p < 0:05;***p < 0:01
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Table 5: GMM estimates for the SV, SVJ, SVL models for WTI futures:
09/2001rD6/2016

sV SVJ SVL
0:117 0:0596* 0:0963*
(1:43) 1:77) (1:71)
0:0247*** 0:0224*** 0:0242***
(5:75) (3:45) (6:43)
0:176** 0:131*** 0:162**
(2:04) (2:60) (2:50)
0:0190**
(2:44)
0:439***
x (39:24)
0:276***
( 3:64)
N 3708

t statistics in parentheses
*p < 0:10;** p < 0:05;***p < 0:01

5 Robustness check for subsamples

In this section, we perform a robustness check by splitting the entire sample in two subsam-
ples: before and after the Lehman Brothers bankruptcy in mid-September 2008. Within
each subsample, the choice of the most appropriate model dizers for the energy futures se-
ries, perhaps re&cting evolutionary forces in energy markets such as the widespread use of
fracking and the resulting increases in natural gas supply. Given the underlying structural
changes in the US energy sector, it is not surprising that a model Ot over the entire period
may not be the best choice over a restricted subsample.

As shown in Table 6, the SVJL model provides the best Ot for the S&P500 futures
market on the overall sample and on the two subsamples. For the natural gas futures
market, the SVJL model provides the best Ot for the overall sample and for the pre-crisis

subsample, while the SVL model is the most appropriate to Ot the post-crisis subsample.

15



For the WTI crude oil futures market, the SVL model provides the best Ot for the
overall sample and for the pre-crisis subsample while the SVJL model performs best for

the post-crisis subsample.

16



Table 6: GMM estimates for S&P500, Natural Gas and WTI futures before and
after September 15, 2008 (Lehman Brothers bankruptcy)

S&P500 NG WTI
Before September 15, 2008
N = 1699 SVJL SVJL SVL
0:137*** 0:0871*** 0:276™**
(13:27) (5:55) (3:87)
0:00331*** 0:0836*** 0:0328***
(16:47) (11:69) (8:33)
0:0577*** 0:5455*** 0:343***
( 57:58) ( 12:32) (6:36)
0:1325*** 0:0966***
( 7:37) ( 26:15)
0:0364*** 0:4921***
x ( 24:70) ( 48:64)
0:440*** 0:0137** 0:262***
( 18:40) (2:20) ( 6:66)
After September 15, 2008
N = 1990 SVJL SVL SVJL
0:188*** 0:0434

(13:22) (1:46)



6 Out-of-sample performance



errors coming from all the models. The BoxfPierce portmanteau (or Q) test for white
noise rejects its null for all the series of forecast errors with the exception of the residuals
for the S&P500 market.

Table 7. Out-of-sample performance of SV, SVL and SVJL models: July-December 2016
RMSE and MAE for the returns process.

SV SVJ SVL SVJL
RMSE
S&P500 0:08014 0:19278 |0:07757 0:1104
WTI 0:26398 0:28523 |0:26231
NG 0:34547  0:3652 |0:33651 0:378
MAE
S&P500 0:06134 0:12978 |0:05884| 0:07281
WTI 0:20573 0:22121 |0:20444
NG 0:26411 0:28076 |0:25676| 0:27043

Table 8: Out-of-sample performance of SV, SVL and SVJL models: July-December 2016
RMSE and MAE for the variance process.

SV SVJ SVL SVJL

RMSE

S&P500 0:00447  0:013848 0:004074 |0:003308
WTI 0:021026 |0:019163| 0:020501
NG 0:066412  0:072497 0:057729 0:03341

MAE

S&P500 0:003215  0:005822 0:002886 |0:002195
WTI 0:015708 |0:014377| 0:015325

NG 0:041425  0:046088 0:037161 |0:023585

6.2 Dieboldiariano test

This test calculates a measure of predictive accuracy proposed by Diebold and Mariano

(1995). We ran the test for each of 350 simulations per model and present summary
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Table 9: S&P500, natural gas and WTI futures: Engle® Lagrange multiplier test for autore-
gressive conditional heteroskedasticity for standardized residuals and squared standardized
residuals for SV, SVJ, SVL and SVJL models.

llag p-val 5lags p-val 10lags p-val 30Ilags p-val

SV SP res 4:80 0:03 520 0:39 6:07 0:81 17:64 0:96
SV SP res squ 0:66 0:42 0:97 0:97 1:31 1:00 12:81 1:00
SV SP J res 0:09 0:76 21:50 0:00 31:89 0:00 5:59 1:00
SV SP J res squ 0:05 0:83 27:44 0:00 36:50 0:00 0:67 1:00
SV SP L res 0:38 054 6:07 0:30 7:38 0:69 2471 0:74
SV SP L res squ 0:00 096 1:65 0:90 2:21 0:99 9:59 1:00
SV SP JL res 0:17 068 511 040 7:67 0:66 23:.01 0381
SVSPJLressqu 0:27 0:61 4:30 051 5:96 0:82 22:44 0:84
SV NG res 0:01 0:93 0:04 1:00 0:10 1:.00 20:19 0:91
SV NG res squ 0:01 0:93 0:04 1:00 0:10 1:.00 1855 0:95
SV NG J res 0:01 0:94 0:04 1:00 0:10 1:00 22:97 0:82
SV NG J res squ 0:01 093 0:04 1:00 0:10 1:00 19140 0:93
SV NG L res 0:05 0:83 0:06 1:00 0:25 1:00 19:37 0:93
SV NG L res squ 0:01 092 0:05 1:00 0:11 1:00 13:84 0:99
SV NG JL res 6:68 001 7:15 021 11:43 0:32 22110 0:85
SV NGJLressqu 4:05 0:04 4:37 0:50 4:29 0:93 4:76 1:00
SV CL res 0:00 1:00 1:91 0:86 4:71 0:91 17:86 0:96
SV CL res squ 0:15 069 0:76 0:98 1:52 1:.00 15:42 0:99
SV CL Jres 0:00 0:98 205 0:84 4:67 091 1712 0:97
SV CL J res squ 0:10 0:75 065 0:99 1:30 1:.00 10:38  1:00
SV CL L res 0:00 1:00 2:06 0:84 4:75 091 1722 0:97

SV CL L res squ 0:11 074 0:75 0:98 1:60 1:.00 10:23  1:00

20



Table 10: S&P500, natural gas and WTI futures: Test statistics and p-values for standard-
ized residuals and squared standardized residuals for SV, SVJ, SVL and SVJL models

KSmirnov p-val SFrancia p-val Qtest p-val

SV SP res 0:094 0:231 3:253 0:001 65:850 0:006
SV SP res squ 0:303 0:000  7:853 0:000 37:832 0:568
SV SP J res 0:296 0:000 8:172 0:000 40:898 0:431
SV SP J res squ 0:452 0:000  9:018 0:000 34:394 0:720
SV SP L res 0:068 0:626 0:928 0:177 85:452 0:000
SV SP L res squ 0:259 0:000 7:420 0:000 43:723 0:316
SV SP JL res 0:072 0:554 0:799 0:212 87:346 0:000
SV SP JL res squ 0:249 0:000  7:090 0:000 39:267 0:503
SV NG res 0:311 0:000  8:799 0:000 6:095 1:000
SV NG res squ 0:483 0:000 9:252 0:000 0:421 1:000
SV NG J res 0:314 0:000  8:809 0:000 5:425 1:000
SV NG J res squ 0:494 0:000 9:254 0:000 0:397 1:000
SV NG L res 0:151 0:007 7:048 0:000 20:472 0:996
SV NG L res squ 0:431 0:000 9:126 0:000 1:917 1:000
SV NG JL res 0:052 0:888 2:377 0:009 34:724 0:706
SV NG JL res squ 0:303 0:000 8:145 0:000 21:069 0:994
SV CL res 0:046 0:958 1:521 0:064 42:030 0:383
SV CL res squ 0:276 0:000 7:644 0:000 34:788 0:704

SV CL Jres uBb 2100.957 1.547 0.061 42.70F6110W10.9091Tf3.030Td[(917)-13



statistics from that set of test results. Given an actual series and two competing predictions,
one can apply a loss criterion (such as mean squared error or mean absolute error) and
then calculate a number of measures of predictive accuracy that allow the null hypothesis
of equal accuracy to be tested. Table 11 reports the results for the futures returns and
corresponding variance for all the markets. The test rejects the null that the two models are
equally capable in terms of their MSEs at the 95% level of conOdence. For the simulations
in which the test rejects equal forecast accuracy, we can compare the mean MSE for the
two models.

While the results are not conclusive for the futures returns series (see Table 11), in the
case of the corresponding variance, we can observe an high number of rejections and for
the S&P500 and WTI realized variance of the futures returns the SVL model compared to
the SV model has the smaller MSE for all the markets. In summary, for the S&P500 and
WTI realized variance of the futures returns, the SVL model has the smaller mean MSE
for those simulations in which the DieboldfiMariano test rejects its null hypothesis of equal
forecast accuracy. According to Table 12, the SVL model, compared to the SVJ model,
shows an higher forecasting accuracy for the S&P500 futures returns and for the natural
gas futures variance. Considering Table 13, for the S&P500 and NG realized variance of
the futures returns, the SVJL model has the smaller mean MSE compared to the SVL
model for those simulations in which the DieboldfiViariano test rejects its null hypothesis

of equal forecast accuracy.
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Table 11: DieboldfiMariano test for futures returns and their variance SV vs SVL: com-
parison of forecast accuracy over 350 out-of-sample predictions

futures returns

variance of futures returns

SP500 WTI NG SP500 WTI NG
SV beats SVL 0 0 0 0 0 0

SVL beats SV 39 31 70 166
Test inconclusive 311 319 280 154 127 184
Total 350 350 350 350 350 350

Table 12: DieboldfiMariano test for futures returns and their variance SVJ vs SVL: com-
parison of forecast accuracy over 350 out-of-sample predictions

futures returns

variance of futures returns

SP500 WTI NG SP500 WTI NG
SVJ beats SVL 0 0 0 0 0 0
SVL beats SVJ 336 45 60 165 69 304
Test inconclusive 14 305 290 185 281 46
Total 350 350 350 350 350 350
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Table 13: Dieboldfiviariano test for futures returns and their variance SVL vs SVJL:
comparison of forecast accuracy over 350 out-of-sample predictions

futures returns variance of futures returns
SP500 NG SP500 NG
SVL beats SVJL 0 0 0 0
SVJIL beats SVL 71 8
Test inconclusive 279 342 92 151
Total 350 350 350 350

7 Forecasting VaR and CVaR

In this section we want to explore whether the forecasts provided by the two models are
able to provide a Onancial investor with a valid tool for hedging risk. Therefore, we derive
VaR and CVaR using the simulated volatility series when Oxing the parameter values at
the GMM estimates and we then backtest them against the actual market futures returns.
We perform this analysis for the SV, SVJ, SVL and SVJL models only are they are the
best contenders overall.

As a measure of market risk, VaR has been widely developed since its introduction
in RiskMetrics by JP Morgan (1994). It is deOned as the maximum potential loss of an
underlying asset at a speciOc probability level over a certain horizon. Despite its popularity,
an obvious and distinctive limitation of the VaR approach is that it only speciCes the
maximum one can lose at a given risk level, but provides no indication for how much more
than VaR one can lose if extreme tail events happen. This may lead to an equivalent VaR
estimate for two dizerent positions, though they have completely dicerent risk exposures.
Artzner et al. (1999) proposed the concept of coherent risk measure, which has become the
paradigm of risk measurement. A good alternative is conditional Value-at-Risk (CVaR),
which is a coherent risk measure and retains the beneOts of VaR in terms of the capability
to deOne quantiles of the loss distribution.

Although the CVaR approach has been widely used for risk analysis, the implementa-

tion of backtesting for CvaR models is much harder than for VaR models. Nevertheless,
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formal backtesting methods can be found in literature, such as the most commonly used
approach zero-mean residual test by McNeil and Frey (2000) which relies on bootstrapping,
the censored Gaussian method by Berkowitz (2001) and the functional delta approach by
Kerkhol and Melenverg (2004).* However, applying these methods tend to be di¢ cult and
overly complex. The application of these methods is based upon the realization of speciCc
conditions, hence it is possible to backtest CVaR only under speciCc circumstances. Kerk-
hol and Melenverg (2004) suggest a viable and simpler alternative to backtesting CvaR on
the basis of equal quantiles, after Onding a nominal risk level b for CVaR.

We now focus on the models for which we have the most evidence of a substantial impact
of the introduction of leverage and jumps on the prediction accuracy of the model. In order
to classify the competing models, we follow a two-stage model evaluation procedure where
in the Orst stage models are selected in terms of their statistical accuracy (the backtesting
stage), while in the second stage the surviving models are evaluated in terms of their
ie¢ ciencyT (the e¢ ciency stage).

Stage 1: Backtesting the VaR and CVaR models

In order to backtest the accuracy of the estimated VaRs, it is necessary to calculate the
empirical failure rates for the estimates. The Failure Rate (FR) or violation rate, computes
the ratio of the number of times returns exceed the estimated VaRs over the total number
of observations. The model is said to be correctly speciCed if the calculated ratio is equal
to the pre-speciCed VaR level (i.e. =5%and = 1%). If the Failure Rate is higher than

, we can conclude that the model underestimates the risk, and vice versa.

The failure rate F RV aRg for the downside risk of a long trading position, is calculated

as the percentage of negative returns that are smaller than the left quantile VaRs, while the

failure rate FRV aRy for the upside risk of a short trading position is the ratio of positive

4 A comprehensive discussion of various CV aR backtesting methodologies as well as their implementa-
tions at dizerent circumstances is provided by Wimmerstedt (2015).
®For details see Sarma et al. (2003).
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returns larger than the right quantile VaRs. We deOne FRV aRs and FRV aRy as follows:
X

1
FRVaRy = T le(yt < VaRgt)
t=1
1 X
FRVaR, = T It (yr > VaRyy)
t=1

where V aRgy.t and V aRy;t are the estimated V aRs for downside and upside risk at time
t for a given conOdence interval, T is the number of observations and I¢() is the indicator

function which is deOned as:
if yv< V aRd;t
if yt V aRu;t

Downside : Iy =

Upside : I =

O OF

There are three formal tests based on the above criteria to backtest the VaR estimates.
The unconditional coverage test (LRc), proposed by Kupiec (1995), examines whether the
null hypothesis Hp : FR =  can be satisCed. A good performance of the VaR model should
be accompanied by accurate unconditional coverage, that is, the failure rate is statistically
expected to be equal to the prescribed VaR level

The method proposed by Kupiec (1995) is capable to test the overestimates or un-
derestimates of a VaR model. It does not, however, consider whether the exceptions are
scattered or if they appear in clusters.® In order to examine whether the VaR violations are
serially uncorrelated over time, Christocersen (1998) proposes the independent likelihood
ratio test (LRinq).

In addition, a more selective conditional coverage test (LRc;) which jointly examines the
unconditional coverage and independence of violations has been developed by Christocersen
(1998). This test investigates if the failure rate is equal to the expected prescribed risk

level and if the exceptions are independently distributed over time. The null hypothesis

®Kupiec® (1995) approach is an unconditional test. On the other hand, we need to conditionally examine



for this test is that the exceptions are independent and that the expected failure rate is



accuracy of the estimated VaRs and CVaRs, the three formal tests described in the previous
section are applied to the model forecasts using empirical failure rate criteria.

Because the LR test is the most rigorous among the three tests considered, we will
focus on the outcomes of this test. When all the models pass the LR test, they are also
compared on the basis of the Failure rate (FR): the model whose FR is the closest to  for
VaR or b



nor the SVL model adequately forecast risk in a CVaR sense.

Table 16 presents a summary of the main conclusions that we can draw from the out-
of-sample VaR/CVaR backtesting results.

We classify the results of a test inconclusive when multiple models show the same results
in terms of the statistical signiOcance and the failure rate. We declare that none of the
models is adequate in the cases where none of the models passes the LR test. Overall,
the introduction of both leverage and jumps (SVJL model) provides the best forecast for
risk in both a VaR and a CVaR sense for investors who have any position in natural gas
futures regardless of their degree of risk aversion. In the S&P500 market, the SVJL model
provides the most precise forecast of risk in a CVaR sense for risk-averse investors with

any position in futures, regardless of their degree of risk aversion.

29



8:0
8:0
6¢:0
€v0

150
6€:0
€9:0
66:0

*o
¢t:0
x€0:0
0¢-0

Gv-0
¢s0
x€0:0
€6:0

ON

150
6-0
8T:0
€¢:0

*o
96-0
x€0:0
€10

160
6-0
€¢:0
€¢:0

10
PUNT

G.:0
6:0
G0
€1,69:0

€T0
6-0

1¢:0
L0

*o
0
*o
*O

90:0
6:0
9:0

160

dS

€¢¢s0
€¢¢S:0
9E9Y:0

G6:0

T0:0
*O
0

L0:0

120
09:0
€.:0
€8:0

«0
0
«0

«0

ON

10:0
€8:0
v1:0
LZ:0

Ge0
6-0
0T-0
8T-0

T0:0
€8:0
LZ:0
L2:0

10
MY

LT:0
€8:0
¥1:0
GT:0

10:0
€8:0
G6:0
GT:0

€T:0
x10:0
19:0
«10:0

G0:0
€8:0
LZ:0
¢9:0

dS

LL0

L0

0v:0
L0

€0:0
*O

«10:0

LT:0

*O
S0:0
«10:0
vT-0

«0
«0
«0

«0

ON

€0:0
96-0
€10
vZ-0

*o
€8:0
x€0:0
¥1-0

€0:0
96:0
vZ-0
vZ-0

10
247

«10:0
96:0
x€0:0
¢e0

*o
96:0
x¢0:0
¢e0

*o
0
*o
*o

*O
96:0
x€0:0
69:0

dS

%€9:T
%E9:T
%059
%881

%90-¥
%69-S
%8E-TT
%¥6-8

%88y
%¢CSC-€
%c8E 1T
%ET-8

%0S-9
%059
%€ VT
%0-€T

ON

%i:g
%180
%ET8
%iriC
%9077 %907
%I8:0  %I80
%ET:8  %88:Y
%ZEL  YbPiT
9669'G  %TO:ET
%I80  %v6:8
9%9L:6  96/9:8T
%ET'8  %Z8IET
%9077 %GTE
%180 %I80
|%eeiL| |%eeL
%ZEL | %907
10 ds
alel ainjreH

FSye A
Fige A
vSye A
Fie A

ﬂmwn—@ >
H”_N_.m A
FSye A
ﬂ_N_.m A

FSye A
Yige A
LSye A
Yige A

LSye A
Yige A
LS\
H_N_m A

%T

%S
ACAS

%T

%9
NS

%T

%9
CAS

%1

%9
NS

"|]an3] Xsia Bulpuodsaliod s 1e souedIubIs
S910UBp 4 ‘1591 a6rIAA0D [eUOIPUOD (866T) I USSIaa0ISLIYD JO SanjeA-d ale suwnjod Y] pue 1s9) Juspuadapul (866T)
qUuasIa01SIIYD JO SanjeA
suwnjod 2"y ‘AjpAinnadsal 1D %66 pue 9466 01 Bulpuodsallod [aAs] He A pagliosaid jussaidal 94T pue 9,5 01 |enba

'S|oA3] XSIJ JualaaIp 1k Sanljie|oA pale|nwis Buisn syjnsal Bunsapioeq HeA asjdwes Jo 1IN0 T 9|gel

d alte suwnjoo PU'yT ‘181 abesanod [euonnipuodun (Ge6T) I291dny Jo sanjen-d moys

30



%9 T *HRAD %96T
0 v @ ACAS
S0 L0 80 0 T0:0 T0 «0 v0:0 €20  %Iv %PrZ %9T FSHeAD
T0 60 VN 0 S0 €0 0 8.0 VN %ZE %80 %0 *HeAD %8e:0
92:0 TS0 €TI0 0 YT:0 YT0 0 920 .0  %EL %IV %y *S™eAD
GO 60 60 0 €0 €0 0 IS0 90 %S9 %80 %80 FIHEAD %961
NS
0 000 0 [¢:0 TS0 O0T:0 0 «0 «0 G0:0  ¥0:0 ZT:0 ¥SHeAD
¥0:0 8.0 0 0.0 06:0 ¥I:0 TO:0 0S:0 «0 200  T0:0 00 *HeAD %80
0 €00 .0 890 9€0 020 0 00 0 L0:0  90:0 ¥T:0 ¥SHeAD
9¢:0 ¢6:0 0 TS0 080 €0:0 ¥T:0 80 «0 v0:0 2000 TT:0 *HeAD  %96:T
CAS
70 20 L0 4«0 TO0 TO0 4«0 2v0:0 Y00 %EY %vZ %bZ YSHRAD
620 60 60 0 S0 S0 .0 80 8.0 %LS %80 %80 *IHEAD %8E0
€6:0 G0 L00O 0 ¥I:0 ¥EO 4«0 920 «0 %86  %T:¥ %ZE *SHeAD
/G0 60 80 40 €0 820 40 /S0 T60 %PIT %80 %9T FIHEAD %961
NS
ON 170 dS SN 10 dS SN 71O dsS ON 10 ds
PUMT "y Py 81ey anjreH q
"|]and] Xs11 Bulpuodsaliod s 3e soueIubIs
S310U3P « ‘158] 86BIBA0D [RUOIIIPUOI (866T) FUSSIS0ISLIYD JO SanjeA d ate suwn|od Y] pue 18] Juspuadapul (866T)
FUBSIBn0ISIIYD JO sanjeA  d ade suwn|od PUly] ‘1se1 abeuanod [euoinipuodun (G66T) 3991dN3 J0 sanjea-d Moys suwnjod
YT ‘Alenndadsal 1D %66 pue %Ge 01 Buipuodsallod [aAs] He AD |eulwou Juasaldal 94880 PUe 9%496'T 10 q 'S|9AJ|
MSIJ [eUlWOU Juaiaaip e Salll|1IB|oA palejnwis Buisn syynsaa Bunsapoeq HeAD ajdwes Jo INQ ST 9|gel







Stage 2: E¢ ciency measures.

Table 17 compares the best performing models within the VaR backtesting process using
the Regulatory loss function (RLF) and Firm# loss function (FLF) as ranking criteria.
Panel A presents the average loss values for the RLF and the FLF for the competing
models at various risk levels in the three markets. The models with the lowest average
loss values are underlined. Panel B reports the standardized sign statistics values. Sag
denotes the standardized sign statistics with null of Tnon-superiorityT of the SVL model
over the SVJIL model while Sga represents the standardized sign statistics with null of
Tnon-superiorityT of the SVJL model over the SVL model. Scp denotes the standardized
sign statistics with null of Tnon-superiorityT of the SVL model over the SVJ model while
Spc represents the standardized sign statistics with null of Tnon-superiorityT of the SVJ

model over the SVL model. T*Tdenotes signiCcance at the corresponding level.
SVL vs SVJL

The results in Panel A show that the SVL model achieves a lower average loss than the
SVJL model under the RLF approach while the SVJL model scores a lower average loss
under the FLF approach. To address the statistical signiCcance of the losses, we report
the values of the standardized sign test in Panel B. For the RLF criterion, the competing
models are not signiOcantly dicerent from each other. Under the FLF criterion, the SVJL
model is signiCcantly better than the SVL model for Orms who are long S&P500 futures
and for Orms who are short natural gas futures at a 95% conOdence level. The SVL
model outperforms the SVJL model only for Orms who are short S&P500 futures at a 95%
conOdence level.
SVL vs SVJ

The results in Panel A indicate that, under the RLF criterion, the SVL model is more
likely to achieve lower average losses than the SVJ model for Onancial regulators who focus
on the risk arecting long positions in futures, while the SVJ model has the potential to
achieve a smaller average loss compared to the SVL model for Onancial regulators who

focus on the risk acecting short positions in futures. Considering the FLF approach, Orms
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who use the VaR criterion for tail risk management while minimizing the opportunity cost
of capital in the S&P500 and WTI crude oil futures markets should prefer the SVJ model
while Orms operating in the natural gas futures market would be better oa adopting the
SVL model.

In order to examine the statistical signiOcance of the losses, we report the values of the
standardized sign test in Panel B. For the RLF criterion, the competing models are not
signiGcantly dicerent from each other. Under FLF criterion, the SVJ model is signiCcantly
better than the SVL model for Orms who are long futures in the SP&500 and WTI markets
at both 95% and 99% conOdence level. On the contrary, the SVL model is signiCcantly



SVJL model is more likely to perform better than SVL only for Orms who are long S&P500
futures at a 1.96% nominal level while SVL scores better for Orms who are short S&P500
futures at a 1.96% nominal level.
SVL vs SVJ

There is no absolute advantage of one over the other under the RLF criterion. Under
the FLF criterion, the SVJ model performs better than the SVL model for Orms who hold
any positions in the SP&500 and the WTI futures markets. Similarly, the standardized sign
test values for the RLF criterion in Panel B indicate that there are no signiOcant dicerences
between the two models. Under the FLF criterion, the SVJ model is signiCcantly better
than the SVL model for Orms who are long futures in the SP&500 and WTI markets at
both the 95% and 99% conOdence levels. On the contrary, the SVL model is signiCcantly
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aversion. Focusing on a Orm& internal risk management, the introduction of both jumps
and leverage in the SVJL model would beneOt speculative Orms who are short natural gas
futures aiming at minimizing tail risk in a VaR sense, as well as speculative Orms who are
long S&P500 futures and use either VaR or CVaR as Onancial risk management criteria

while wanting to minimize the opportunity cost of capital.
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Appendix I: Realized Variance and Moment conditions

Following Bollerslev and Zhou (2002), who use continuously observed futures prices, we
build a conditional moment estimator for stochastic variance models based on matching
the sample moments of Realized Variance with population moments of the Integrated Vari-
ance. In this paper, realized variance is computed as the sum of high-frequency (10-minute

interval) intraday squared returns.
8.1 No jumps

The returns on futures at time t over the interval [t k;t] can be decomposed as
z
t t
r(tk)=InF; InFeg= ()d + ()aw
t—k t—k

When no jumps are considered, the Quadratic Variation coincides with Integrated Variance
from the population and it is deOned as
z t

QV (tk) =1V (tk) = 2()d
t—k

The Realized Variance from the sample is deOned as:

S|
N

DK
RV (t;k;n) = r t k+
j=1

S|

RV (£ k:n)2 1V (t; k)

asn ¢ 1









8.2 Jumps

When we allow for discrete jumps, the returns on futures at time t over the interval [t k; t]

can be decomposed as

r(;k)=InF¢ InFe_k
Zt Zt Zt

= ()d + ()dw +  x()dN( )
k

t—k t—k t—



€15 = E[BPrt+1jG] + 20t RVitsr

since

E [RVi+1) Gt] = E [BPgea1j G+ dt
combining with equation (A:3) on page 56, Appendix A.1l
Residual 2
At time (t+1;t+2)

€23 = E[RVi+1






E V{aa Ge can be observed from the realized variance
Vt2+1;t+2 is the realized variance in the next period]TJ/F23114]TJ/.2[w8.55610.473Td[()]TJ/F4710.9091TH



Appendix Il: Figures

Figure 1
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Figure 2



Figure 3
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Figure 4



Figure 5
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Figure 6



Appendix I11: t and J tests on the moment conditions
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