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Abstract

Esteban and S�akovics (2003) showed in their three-person game that an



the members’ rents, even if the alliance wins the �rst race. Because of this rent-
dissipation e�ect, the members of the alliance have lower valuations for winning
in the �rst race, reducing their e�orts and the winning probability. Second, even
without the rent-dissipation problem, e.g., if the winning prize is shared equally,
there are still free-riding incentives for the alliance members to reduce e�orts and,
consequently, the winning probability. As a result, they conclude that it is hard to
materialize strategic alliances in a Tullock contest model.1 Konrad (2009) points out
that these disincentives are not speci�c to Tullock contest models|they also appear
in �rst price all-pay auctions.2

However, in the real world, forming alliances in competition is ubiquitous|for ex-
ample, in research and development activities, and nations in con
icts. In this paper,
we provide a simple solution for this alliance paradox by using complementarity in
e�orts in a general but symmetric N -person game.3 To analyze complementarity, we
introduce a simple and tractable CES e�ort aggregator function to translate alliance
members’ individual e�orts into the alliance’s joint e�ort. We assume that each in-
dividual member’s marginal e�ort cost is constant in order to limit the bene�ts of
forming an alliance to e�ort complementarity only.4 With strong complementarity in
e�orts, a larger alliance has the e�ort advantage relative to a smaller one. Although
there are aforementioned disincentives, it makes sense to form an alliance as long as
the bene�ts from complementarity exceed the costs. The complementarity parame-
ter in the CES aggregator provides a simple measure of the strength of incentive to
form alliances as its value increases from 0 to 1.5

1Konrad (2004) considers an asymmetric all-pay auction game with exogenously determined
hierarchical tournament structure, and shows that the highest valuation player may not have a
chance to become the �nal winner depending on the hierarchical structure.
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We are not the �rst to present this idea. Following Cornes (1993) and Cornes
and Hartley (2007) in the literature of private provision of public goods, Kolmar
and Rommeswinkel (2013) and Choi, Chowdhury, and Kim (2016) have already
demonstrated the presence of such incentives in alliance formation (see next section).
This paper goes one step further. Since players’ payo�s are related to the whole
alliance structure, it is important to know how other players react to the alliance
structure and whether or not the alliance structure could be stable. Therefore,
we need to see players’ and alliances’ strategic interactions, and what happens in
equilibrium: in particular, we ask whether or not there exists an equilibrium alliance
structure.

We set up a simple alliance (coalition) formation game with multiple stages. In
stage 1, players form alliances. In stage 2, alliances compete with each other, and
in stage 3, the winning alliance members compete with each other for the indivisi-
ble prize. The solution concept is the standard subgame perfect Nash equilibrium.
Two things should be noted. First, we model the alliance formation process as an
\open-membership" game (Yi 1997) in which players can freely choose their alliance
without being excluded.6 This setup can be motivated by examples of geographical
concentrations of specialized retails stores such as car dealers (auto rows). In big
cities in the United States, car dealers tend to collocate to form auto rows, despite
that they must compete with each other, and that they can choose to stand alone
in a di�erent location. Consumers are attracted by auto rows since they can �nd a
wide variety of cars at competitive prices, and stand-alone dealers have a hard time
surviving.7 The prosperity of an auto row depends on the number of retail stores and
each store’s e�orts.8 Car dealers choose their locations freely, knowing that big auto
rows attract many customers, but that the dealers there must face �erce competition
with neighboring dealers.9 Second, given the way we set up the multi-stage game, a
singleton-only alliance structure and a grand alliance structure are practically iden-
tical, since the former does not have the third stage competition, and the latter does

cost. We can interpret these results that an increase in complementarity within groups intensi�es
group competition.

6In a companion paper, Konishi and Pan (2020), we consider a sequential alliance formation
game �a la Bloch (1996), and compare the resulting alliance structures (see Conclusion section).

7See Konishi (2005) for a mechanism of the emergence of concentration of retail stores.
8Note that a Tullock contest success function is identical to consumers’ logit demand function

in a discrete choice model.
9Another possible example is competing technologies that have network externalities: A classic

instance is the videotape format war between VHS by JVC and Betamax by Sony in the late 1970s.
Japanese electric appliance companies chose one of these two technologies (JVC, Panasonic, and
RCA for the former, and Sony, Toshiba, and Sanyo for the latter), but VHS won the market against
Betamax. The market competititon took place among the winning technology adopters.
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not have the second stage competition. The outcome of these two alliance structures



1.1 Literature Review



nously formed groups using a CES e�ort-aggregator function when group-members
have heterogeneous abilities. Assuming that the winning prize is enjoyed by all mem-
bers of a winning team as a public good, they analyze how e�ort complementarity
a�ects members’ e�orts. They �nd that the complementarity parameter has no e�ect
on equilibrium e�orts if groups are homogeneous. If groups are heterogeneous, then
the divergence of e�orts among group-members and, somewhat surprisingly, the win-
ning probability decreases as the complementarity of e�orts goes up, contradicting
common intuitions that complementarity of e�orts solves the free-riding problem.



tion games, including a sequential coalition formation game in Bloch (1996), Okada
(1996), and Ray and Vohra (2001). S�anchez-P�ages (2007a) explores di�erent types
of stability concepts, including sequential coalition formation games in alliance for-
mation in contests where e�orts are perfect substitutes. S�anchez-P�ages (2007b) con-
siders various stability concepts in a model where players allocate endowment into
productive and exploitative activities. These papers assume the award is divisible,
and alliance members can write a binding contract of sharing rule in the case of
the alliance’s winning. In our paper, we do not allow for any side payment, and
players cannot credibly commit to any intra-alliance distribution rule as in Este-
ban and S�akovics (2003). We only focus on the bene�ts of forming a larger group
through complementarity of e�ort and analyze the endogenous formation of alliances
in Tullock contests.

2 The Model

There are N players who seek to get an indivisible prize (say, to be the head of an
organization). There is no side payment allowed. The set of players is also denoted
by N = f1; :::; Ng, and they can form alliances exclusively for the purpose of being
the �nal winner. Each player i 2 N can make an e�ort to enhance the popularity of
her alliance and that of herself. We assume that each player has an identical linear
cost function C(ei) = ei for all ei � 0.

Starting from the inter-alliance contest, we introduce potential bene�ts for players
who belong to an alliance|complementarity in aggregating e�orts by all alliance
members. That is, if player i belongs to alliance j with Nj � N as the set of
members, and these members make e�orts (ehj)h2Nj , then the aggregated e�ort of
alliance j, Ej, is described by a CES aggregator function

Ej =





Stage 1. All players i 2



Proposition 1. Suppose that the winning alliance of the �rst stage has size nj.
Then, the third-stage equilibrium strategy and payo� are

êi =
nj � 1

n2
j

and ~V j =
1

nj

�
1� nj � 1

nj

�
=

1

n2
j

:

3.2 Stage 2: Contest between Alliances

Consider an inter-alliance contest problem. From Proposition 1, we know that for
a given size of alliance nj the payo� of intra-alliance contest is determined by ~Vj =
1
n2
j
. Thus, the second stage maximization problem of a player ij in alliance j is to

maximize the payo�
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ij +
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The �rst-order condition with respect to eij (if an interior solution) is�P
j0 Ej0 � Ej

�

j0 j



or



Let X�j =
P

j0 6=j xj0 . Then, xj > 0 is a unique best response to X�6



Figure 1



There is j� 2 f1; :::; Jg such that p�j = sj(X
�) > 0 (active alliance) for all j � j�

( X̂j > X�), while p�j = sj(X
� >



as � increases, we consider three values of � in order: � = 1
2

(weak complementarity),
3
4

(moderate complementarity), and 4
5

(strong complementarity). We investigate how
alliance structure is a�ected by the complementarity of team e�orts.

4.1 Weak Complementarity � = 1
2

In this case, we have 2�3σ
1�σ = 1 and 1�2σ

1�σ = 0. Using Theorem 1, we know the
following:

u = = =u





4.4 Observations

The above examples show that when � is small, there is no gravity to sustain an
alliance, since the e�ort complementarity is not su�cient enough to compensate
Olson’s ine�ciency of alliances.13 In this case, players prefer standing alone and
competing with other single players and/or alliances. In contrast, if � is large, a larger
alliance is always relatively more attractive than a smaller alliance, resulting in the
grand alliance. When � is in the middle range, nontrivial alliances can appear and
Pareto-dominate trivial allocation. For nontrivial equilibria, the complementarity is
strong enough to make a singleton player unpro�table. At the same time, it is not
strong enough that players prefer a smaller group to avoid severe competition in the
�nal stage. These two forces jointly ensure stability. We will show that this is not a
coincidence.

5 Two Competing Alliances

We start with the case where the number of (active) alliances is two. We �rst show



a unique two-alliance equilibrium in which the maximal di�erence in sizes is one.
Denoting t = 3σ�2

1�σ , we have the following result.

Theorem 2.



Figure 2: No Spin-O� Conditions.

The following theorem shows an important welfare implication of having a chance
to form alliances. The emergence of alliances in subgame perfect equilibrium is not
only an equilibrium phenomenon (like prisoners’ dilemma games), but also a Pareto-
improvement for players’ welfare, because it has dynamic contests instead of a single
round contest.

Theorem 3. Every two-alliance equilibrium fn1; n2g with jn1 � n2j � 1 Pareto-
dominates a no-alliance contest outcome.

5.1 Multi-Alliance Case

Is a symmetric alliance structure, i.e., all alliances are of the same size, stable when
J > 2? First of all, forming multiple alliances may be welfare-improving. In fact,
if the alliances are symmetric, players’ welfare improves as the number of alliances
increases. Formally,
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Proposition 3. Let symmetric alliance structure �J be a structure that has N
J
� 2

players in each alliance. If �J 0 and �J 00 with J 00 > J 0 are both equilibrium alliance
structures, then �J 00 Pareto dominates �J 0.

However, the remaining question is whether a multi-alliance structure is stable
or not. The bene�t from forming a larger alliance is that the new alliance has a
higher winning probability in the inter-alliance contest. However, this e�ect is o�set
by a stronger intra-alliance competition in the third stage. This winning-probability-
enhancement e�ect is stronger if each alliance only has a smaller number of members
and is weaker if the number of alliances is larger. Thus, we expect that, when the
number of alliances is more than two, it requires a larger membership in each alliance
to be a symmetric equilibrium allocation. This intuition leads us to the following
example.

Example 1. Consider the case when J = 3, n = 7 or 8, and � = 3
4

u(7; f7; 7; 7g) = 0:0061548 < u(8; f8; 6; 7g) = 0:0061581

u(8; f8; 8; 8g) = 0:0047743 > u(9; f9; 7; 8g) = 0:0047736

The above example shows that even when the complementarity between players
is moderate, a symmetric three-alliance structure is not immune to a unilateral move
if n = 7. But, a larger membership (n = 8) again guarantees stability. In fact, � = 3

4

is the borderline case for No Symmetry Breaking when J = 3, as will be seen in
Corollary 1.

Proposition 2 says that there is no stable two-alliance structure if � � 2

:



Note that u(1; �0) > u(n; �) holds for all n � 2 and all J � 4; i.e., there exist spin-o�
incentives, and � cannot be a subgame perfect equilibrium outcome. However, when
J = 5 and n = 2, u(1; �0) = 1

36
and u(2; �) = 1

4
1
25

(5 � 4
2
) = 3

100
> 1

36
, no player has

incentives to spin o� and form a singleton alliance. Moreover, since the size of an
alliance has no e�ect when � = 2

3
, the payo� of deviating from a two-player alliance

and forming a three-player alliance is 1
9

1
52

�
5� 4

3

�
< 3

100
. Therefore, f2; 2; 2; 2; 2g is

in fact a stable structure. Since payo�s are continuous in �, this example can be
extended to those �s that are close to but smaller than 2

3
. �

Finally, the following proposition assures that for any number of alliances J � 2,
there is a spin-o� incentive for every player who belongs to an alliance, if � is small
enough.

Proposition 4. Suppose that � � 1
2
. Then, from any alliance structure � with

a non-singleton alliance, there is a player with an incentive to spin-o� to form a
singleton alliance.

Example 1 seems to imply that players have stronger incentives to join a larger
group when there are more alliances, and the parameter space for a stable symmetric
alliance structure shrinks as the number of alliances increases as a result. In the
following section, we analytically con�rm this intuition using a heuristic approach
that approximates the case with large alliances.

6 Symmetric Alliance Structure with Large Pop-

ulation

In the previous section, we analyzed equilibrium conditions by �nding the parameter
ranges that discourage forming a larger alliance and satisfy No Spin-O� conditions.
In this section, we will try to interpret these conditions in the case of a large pop-
ulation, and thus large alliance sizes. We also generalize our analysis by allowing
for di�erent continuation games to observe the relevance of continuation payo�s on
the equilibrium alliance structure. Consider the following generalization of Stage 3:
After team j wins the inter-alliance competition, the winner of the subsequent inter-
alliance competition gets a fraction q as a private reward. The remaining fraction
(1 � q) is the public reward enjoyed by all members on the winning team (Esteban
and Ray 2001). Note that if q = 1, this corresponds to the original setup. If q = 0,
then there is no Stage 3 competition. If 0 < q < 1, it is the mixed reward case.
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We will show that the generalized model above is equivalent to parameterize the
expected continuation payo� for team j’s victory as V (nj) = 1=nδj .

Lemma 2. When the fraction of private reward is q 2 [0; 1], the continuation payo�
is uniquely written as

V (nj) =
1

nδj
;

where � = � ln
�
qn�2

j + (1� q)
�
= lnnj.

That is, if the continuation game is a simple Tullock contest q = 1 (private prize),
� = 2 holds. If � = 1, this means an equal sharing of V = 1 without further rent
dissipation, and if 1 < � < 2, it can be interpreted as a case partial rent dissipation
within the winning alliance. If � = 0 or q = 0, this is the public reward case. A slight
modi�cation of Theorem 1 covers all of these cases:15

Theorem 1’. Suppose that, in the winning size nj alliance the member’s subsequent
payo� is V (nj) = 1

n�j
. There exists a unique equilibrium in the second stage game

for any partition of players � = fn1; :::; nJg characterized by the share function
s(X�) = 1 and a unique j� � J such that players in alliance j � j� obtain payo�

uj =
1

nδj

241� (J � 1)
n
δ� �



large populations. With the �rst-order approximation, we can show that uj does not
increase with such a move if and only if σ

1�σ �
J
J�1

�.9



Figure 3:

: :



Figure 4: The stability of a symmetric three-alliance structure.

If � = 1 and J = 2, then the limit conditions (i) and (ii) in Proposition 5 become
1
2
� � � 2

3
, so smaller values of � achieve stable alliance structures. If the rent

dissipation in stage 3 is milder than the simple Tullock contest, such as partial prize
sharing (1 < � < 2) with J = 2, then the values of � for stability are somewhere in
between.

For each value of �, the values of � that support the stability of J symmetric
alliance structure are δ

1+δ
< � < δ

1+δ� 1
J

. Thus, as J goes up, the parameter range of

� for stable alliance structures shrinks, although players’ expected payo�s increase.

7 Concluding Remarks

In this paper, we used a CES e�ort aggregator function to describe incentives to form
alliances by e�ort complementarity, and we show that there exist stable alliances in an
open-membership two-stage alliance formation game when the e�ort complementarity
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is moderately strong. When complementarity is too strong, alliances become too
attractive, and all players end up forming a grand alliance, which simply defers the
noncooperative contest by one period.

There are alternative alliance formation games in the literature (see Hart and
Kurz 1983). Using a noncooperative game approach, Bloch (1996), Okada (1996),





[17] Hart, S., and M. Kurz (1983): \Endogenous Formation of Coalitions," Econo-
metrica 51(4), 1047-1064.

[18] Herbst, L., K.A. Konrad, and F. Morath (2015): \Endogenous Group Formation
in Experimental Contests," European Economic Review 74, 163-189.





Appendix A (Proofs)

Proof of Theorem 1. The arti�cial game we constructed has the same �rst-order
conditions as the original �rst-stage game. This implies that j� is uniquely de�ned,
as in the statement of Lemma 1, only j = 1; :::; j� exert e�orts in equilibrium. Since

p�j = 1�
P
j0 6=j



Therefore, the equilibrium payo� of the original problem is

uj = p�j
~Vj � ej

=

241� (j� � 1)
n

2�3�
1��
jPj�

j0=1 n
2�3�
1��
j0

35 1

n2
j

�

24 1

n
1

1��
j

241� (j�



We will compare u (n1 + 1; �0) with u (n2; �).

u (n1 + 1; �0)� u (n2; �)

=

�
1

(n1 + 1)2 + (n2 � 1)2

� 
(n1 + 1)2 + (n2 � 1)2 � (n2 � 1)2 (n1 + 1)�1

(n1 + 1)2 + (n2 � 1)2

!

�
�

1

n2
1 + n2

2

��
n2

1 + n2
2 � n2

1n
�1
2

n2
1 + n2

2

�
=

�
1

(n1 + 1)2 + (n2 � 1)2

�
�
�

1

n2
1 + n2

2

�
�

 
(n2 � 1)2 (n1 + 1)�1�

(n1 + 1)2 + (n2 � 1)2�2

!
+

�
n2

1n
�1
2

(n2
1 + n2

2)
2

�
=

1

n2 (n1 + 1)
�
(n1 + 1)2 + (n2 � 1)2�2

(n2
1 + n2

2)
2
��

n7
1 � 2n6

1n2 + 4n5
1n

2
2 � 5n4

1n
3
2 + 5n3

1n
4
2 � 4n2

1n
5
2 + 2n1n

6
2 � n7

2

+5n6
1 � 12n5

1n2 + 18n4
1n

2
2 � 20n3

1n
3
2 + 17n2

1n
4
2 � 8n1n

5
2 + 4n6

2

+12n5
1 � 27n4

1n2 + 28n3
1n

2
2 � 26n2

1n
3
2 + 16n1n

4
2 � 7n5

2

+16n4
1 � 28n3

1n2 + 16n2
1n

2
2 � 12n1n

3
2 + 8n4

2 + 12n3
1 � 12n2

1n2 � 4n3
2 + 4n2

1

�
:2



0, [�] > 0 holds. Rewriting this, we have

4n6
2 � 4n5
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1

= 4
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�
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�
+ 3n2
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�
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We have completed the proof.�

Next, we argue that u (n1 + 1; �0)� u (n2; �) >
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o�. Formally,

Lemma A3. For any two-alliance structure � = (n1; n2) with n1 � n2 �
2, it is bene�cial to spin o� from the larger group whenever � � 2

3
.

Proof. Note that the payo� in the size-n1 group is
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:

Let �00 = (1; n1 � 1; n2) : Then we have
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The last inequality holds because (n1 � 1)t � 1 whenever n1 �



Lemma A4. When J = 2, there is �� 2 (3
4
; 4

5
) such that for all � 2 (2

3
; ��),

the following statements hold: (i) Players in the smaller alliance do not
have an incentive to move to a larger alliance. (ii) When alliance sizes
are equal, players do not move to create a larger alliance. (iii) Players
in a larger alliance have an incentive to move to the smaller one.

Proof of Lemma A4. Consider � = (n1; n2) and �0 = (n1 + 1; n2 � 1)
with n1 � n2 � 2. All three statements above are equivalent to

u(n1 + 1; �0)

u(n2; �)
< 1:

Suppose there is a �� such that at � = ��, u(n1+1,π0)
u(n2,π)

< 1. By Lemma A1

and A2, we know that (a) �� < 4
5

and (b) u(n1+1,π0)
u(n2,π)

< 1 holds for all � with
2
3
< � < ��: It remains to show that �� > 3

4
. For computational purposes,

let n1 = n + d + 1 and n2 = n + 1 with n � 1. Note that n1 � n2 is
equivalent to d � 0. Consider the case with � = 3

4
. We have
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�
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Now, case (ii). This case is more cumbersome, since a player can spin o� from

both alliances. We need to consider two possible spin-o� subcases u(n+1,fn+1,ng)
u(1,fn,n,1g) � 1

and u(n,fn+1,ng)
u(1,fn+1,n�1,1g) � 1.

u(n; fn; n+ 1g) =
1

n2
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1
nt

1
nt

+ 1
(n+1)t

! 
 

1 n; n



with Case 1. The payo� from fn; ng is 1
n2

1
2

�
1� 1

2n

�
= 2n�1

4n
, and the one from f2ng

is 1



Second, we check u(n+ 1; �). We have

u(n+ 1; �) =
1
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"
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n
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n
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:

Since u(n+ 1;�) is increasing in � for � � 2



@u(�J)

@J
=

1

N3
(N � 2J + 1) :

Therefore, ∂u(πJ )
∂J

> 0 holds for all J � N+1
2

. Also, notice that a group of N players
can sustain at most N

2
alliances. Therefore, a symmetric structure with more alliances

Pareto-dominates one with less. �

Proof of Proposition 4. From Theorem 1, we know that the payo� of a player
who is one of nj is

u(nj; �) =
1

n2
j

241� (J � 1)
n

2�3�
1��
jPJ

j0=1 n
2�3�
1��
j0

35241� (J � 1)
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1��
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j0=1 n
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1��
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35 :
Let �0nj stand for the structure after one player in alliance j spins o� to form a
singleton alliance. This player has a payo� equal to

u(1; �0nj) =

241� J 1PJ
j0=1,j0 6=j n

2�3�
1��
j0 + (nj � 1)

2�3�
1�� + 1

352

:

Since 1�2σ
1�σ � 0, n

2�3�
1��
j � (nj � 1)

2�3�
1�� � 1

2�3�
1�� = 1 and n

1�2�
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j � 1

1�2�
1�� = 1 hold for all

nj � 2. Since n
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1��
j is a convex function for � 2 [0; 1

2
] (2�3σ

1�σ 2 [1; 2]), we have
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This implies PJ
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1�� + 1

J
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:

Thus, we have
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changing from (n1; n2) to (n1 + �; n2 ��). We have
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Evaluating at n1 = n2 = nj = n and D = Jnδ�
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1�� , we obtain,
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Notice that, if n is large, the second term in the last equation is close to 0. Therefore,
when n is large, players have no incentive to move to another alliance unilaterally if

du1

d�
< 0 () �� < (J � 1)

�
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1� �

�
:

Rearranging the last inequality yields the No Symmetry Breaking condition in Propo-
sition 5.

44



Now, we turn to the No Spin-O� condition. The payo� from a symmetric alliance
structure is simply written as

u(n) =
1

nδ
1

J

�
1� 1

nJ

�
:

In contrast, the payo� of a player who spun o� from a symmetric alliance structure
is more subtle, and we need to consider two cases. We start with the case where
� � σ

1�σ < 0. Let � =
��� � σ

1�σ

�� If a player spins o�, then there are J + 1 alliances,
but we have
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