

Boston College
Computer Science Department

Senior Thesis 2002
John Weicher

Distributed 3D Raytracing
Prof. William Ames

Introduction

Since their advent, computers have been used to aid humans in tasks that would

be too complex or too time consuming to do without them. However, as computers
became more and more powerful, they also began to show potential usefulness in areas
that before were completely beyond our ability at all. People were finding a use for
computers in all areas of activity, and visual art was no exception. The idea arose that
perhaps computers could be used to generate pictures that looked so real, a person would

the obvious reason of it simply being too dark to see anything, but because it is these
particles of light which make the very image our eyes see altogether!
 The process of image formation within the eye is very simple. Every scene or
environment in which we can see has light sources: things that actively emit light
themselves, or things that “emit” light by reflecting it. When an object emits light, such

their color and intensity. Finally an “eye-point” and direction are defined. This is the
location from which the image will be generated. Finally, the raytracing algorithm is
applied to the scene. Light rays are simulated leaving the active light sources (those
which actively emit light), bouncing off the objects in the scene based on the surface
normal of the objects at the points of contact, having their colors altered depending on
what objects they come in contact with. Determining the color of light rays that
eventually come in contact with the eye-point forms an image (Fig. 4).

This process is more accurately called forward raytracing, as it models how light

rays actually leave their source and travel forward in their journey until they either reach
the eye-point or it is determined they never will. In theory this is an algorithm which

3. Implementation

 Now that I have explained what backwards raytracing is, it is now appropriate to
discuss my particular implementation of a backward raytracer. This will also serve to
better explain how the raytracing process is actually achieved. I have chosen to
implement my raytracer in the C++ language, as C is a very efficient procedural
language. Although a language such as Java would have offered a much easier means of

Any

one intersection is calculated for a ray, it would need to be determined which intersection
is “first” or closer to the eye. The algorithm would need to do this to ensure that the
proper object’

 - Set that pixel to the returned color

intersection point, all that is needed is the surface normal at that point, a vector pointing
to the light source from that point, and the object’s original color. Cos θ can be easily
computed by taking the dot product of the two vectors after normalization. An example
of this calculation is below:

 Normalize both vectors: VL = sqrt(LVx

2 + LVy
2 + LVz

2)
 LVnorm = (LVx/|VL|, LVy/|VL|, LVz/|VL|,)

VSN = sqrt(SNx
2 + SNy

2 + SNz
2)

 SNnorm = (SNx/|VL|, SNy/|VL

The computation for a reflected vector, much like that of Lambertian shading, is
dependant only on the incoming ray (vector), and the surface normal vector of the object
at the intersection point. The angle of the incoming vector relative to the surface normal
of the object at that point is the same as that angle that the reflected vector will make with
the surface normal at the same point (Fig. 8).

A reflected vector can be computed using the formula:

VREF = 2 * (VINC • VSN) * VSN – VINC

The operation within the parenthesis is the dot product operation, just like in the
computation for Lambertian Illumination. I will not go through an example of this
computation within this paper, as it is a bit time consuming. It is sufficient to know
however, that this calculation generates a reflected vector that can be used to generate the
reflected ray of a mirrored object.

4. Additional Implementation Information

 4.1 Matrix Transformations

 One of the problems that I encountered when initially designing my
implementation was the deriving of the equations that actually solve for the intersection
between the objects and a line. This was often a very tedious and difficult task. For
example, deriving the equation to solve for t

even with the help of software such as Mathematica. Of course these derivations are not

 using the Composite Matrix of the object.

This process produces the same resulting intersections as would be computed using the
original ray and the much more complicated equations derived for arbitrary versions of
every object. By using this process of matrix transformations, I eliminated the need for
doing these derivations. Matrices also allow for an easy means to stretch, rotate, and
move objects in creative ways.

 4.2 Anti-Aliasing

 One of the problems with raytracing is the fact that the pixels of a computer are a
finite size, and can only be set to one color. Because pixels are the smallest unit of color
on a screen, it is impossible to set one half of a pixel to one color, and the second half to
another. This causes problems because situations can arise (and usually do), in which if
we could “zoom in” on a scene, we would notice places in the image where the edge of
an object really only should cover part of a pixel. This usually occurs because pixels are
often represented as a square. Therefore, trying to represent curved edges in particular
usually results in an edge that looks “jagged.” In Figures 10 and 11, we see how trying to
represent a true circle with square pixels is impossible. Figure 10 represents the circle we
would like to draw on the screen, but Figure 11 shows the “circle” we have to settle with

When viewing this circle at its normal size, and not enlarged to the pixel level as it is
above for the sake of explanation, it would appear as a much more accurate circle. It
should also be noted that while anti-aliasing makes an image look more realistic and
servers to smooth edges, it obviously takes much longer. In the case of my
implementation, there are five times as many rays fired, and so five times the number of
calculations to perform per pixel. I have included other examples of anti-aliasing that has
been applied to actual images generated by my raytracer in Appendix B of this paper.

 4.3 Shadows

 Another, very simple to implement component of raytracing is shadowing. To
make an image more realistic, objects that are between a light source and other objects

 The vast majority of objects in this world are not made up of just a single color.

occurred to me, too much of my application was already coded hard fast to the idea of a
single light source.

 These are the three primary improvements that I wish I could have made to my
program. Obviously there are countless other features that I would have like to
incorporate as well, such as the ability to crea

Bibliography

Angel, Edward, Interactive Computer Graphics: A Top-down Approach with OpenGL.
(New York: Addison Wesley Longman, 2000.)

Glassner, Andrew S., Ed. An Introduction to Ray Tracing. (New York: Academic Press,
Inc., 1989.)

Ma, Kwan-Liu, Painter, James S., Hansen, Charles D., Krogh, Michael F. “A Data
Distributed, Parallel Algorithm for Ray-Traced Volume Rendering.” ACM Computer
Graphics. (SIGGRAPH Proceedings 1993). (New York: ACM Press, 1993.)

A special thanks to Prof. William Ames for all his time and help.

Appendix A – Scene File Format

 Below is the format for a scene file:

[rayfile]

[GLOBALS]
attribute1 = value1
attribute2 = value2
…
attributen = valuen
[/GLOBALS]

[OBJECT]
type = value
attribute1 = value1
attribute2 = value2
…
attributen = valuen
[/OBJECT]

…

more object definitions

…

[/rayfile]

Appendix B – Samples Images

Below is an example image of the Lambertian shading model used on an illuminated
sphere:

(App. B Con’t)

Appendix C – Transformation Matrices

Below are the matrices through which the various transformations can be applied to a
point: Translation, Scaling, and Rotation in each of the three axes.

Appendix D – Source Code

Below is the listing of all source code:

Client:
Main.cpp
Main.h

Server:
Server.cpp
Server.h
Tracer.cpp
Tracer.h
Sphere.cpp
Sphere.h
Plane.cpp
Plane.h
Parser.cpp
Parser.h
Error.cpp
Error.h

